Conditions for custodial symmetry in NHDMs

Based on RP, M. Solberg. In preparation

Robin Plantey

2023-09-15

NHDM Potential

Bilinear form of the NHDM potential

$$V = M_0 K_0 + \Lambda_0 K_0^2 + M_a K_a + L_a K_0 K_a + \Lambda_{ab} K_a K_b$$
, $a, b = 1, ..., N^2 - 1$

Under $SU(N)_H$ basis change $\Phi_i \rightarrow U_{ij}\Phi_j$

- $M_a o R(U)_{ab} M_b$
- $L_a \rightarrow R(U)_{ab}L_b$

with R(U) the adjoint representation

• $\Lambda_{ab} o R(U)_{ac} R(U)_{bd} \Lambda_{cd}$

Spectral decomposition of Λ

$$\Lambda = \sum_{a}^{N^2 - 1} \beta_a v_a v_a^T$$

ightarrow V is determined by

- $N^2 + 1 SU(N)$ invariants
- $N^2 + 1$ adjoint vectors

Identifying symmetries in NHDMs: A challenge

Basis freedom

$$\Phi_i
ightarrow U_{ij} \Phi_j \quad \leftrightarrow \quad K_a
ightarrow R(U)_{ab} K_b$$

Is there a *U* such that the symmetry is manifest?

Basis-invariants

- CP: Difficult to find a generating set of CP-odd invariants.
- Applicable to other symmetries $\subset SU(N)_H$

Basis-covariant framework¹

Basis-invariant properties of basis-covariant objects

Examples:

- Vectors inclusion in subspaces of \mathbb{R}^{N^2-1}
- Relative orientation of vectors
 - ightarrow Goal: Relate such properties to the presence of symmetries

F-product

 \mathbb{R}^{N^2-1} is isomorphic to su(N): $v \leftrightarrow V = v_i \lambda_i$ when equipped with so-called F-product

$$F_k^{(u,v)} = f_{ijk}u_iv_j \quad \leftrightarrow \quad [U,V] = 2if_{ijk}u_iv_j\lambda_k$$

→ We can detect inclusion in a subalgebra

¹Nishi, Ivanov, Trautner et al. 0605153, 1901.11472, 1903.11110

Custodial symmetry

Manifestly CS NHDM potential

$$\Lambda_C = \begin{pmatrix} C_N & 0 \\ 0 & A_N \end{pmatrix} \quad \text{where} \quad C_N : k \times k \qquad \left(k \equiv \frac{N(N-1)}{2}\right)$$
 with $\begin{pmatrix} C_N & 0 \\ 0 & 0 \end{pmatrix} \equiv \sum_{a=1}^k \beta_a t_a t_a^T \quad \text{and} \quad \begin{pmatrix} 0 & 0 \\ 0 & A_N \end{pmatrix} t_a = 0$

$$C_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad C_4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \alpha \\ 0 & 0 & 0 & 0 & -\alpha & 0 \\ 0 & 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & \alpha & 0 & 0 & 0 \\ 0 & -\alpha & 0 & 0 & 0 & 0 \\ \alpha & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Custodial symmetry

Basis-invariant property

 Λ has k eigenvectors v_a spanning the subspace $(e_1,...,e_k) \simeq so(N)$

- \rightarrow the set $\{V_a = (v_a)_b \lambda_b\}$
 - satisfies *so(N)* commutation relations
 - forms the defining representation of so(N)

The relevant subspace of \mathbb{R}^{N^2-1} is also a subalgebra!

Can make use of Lie algebra/representation theory to detect custodial symmetry

General necessary and sufficient condition

Sufficient condition

Custodial symmetry \iff Λ has a set of $k = \frac{N(N-1)}{2}$ eigenvectors v_a such that

- Same k eigenvalues as an instance of the block C_N
- Orthogonal to L and M
- Correspond to the **defining representation** of so(N) with the same F-product relations as $\{t_a\}$

Sketch of proof

The representation V_a is equivalent to T_a \rightarrow there exists $U \in SU(N)$ such that $UV_aU^{\dagger} = T_a \iff R(U)v_a = t_a$ It follows that $R(U)\Lambda R(U)^T \simeq \Lambda_C$

Can be simplified for N=3 and N=4 Higgs doublets

3HDM²

3HDM Custodial block

$$C_3 = 0_{3\times3}$$

Eigenvectors t_a correspond to the usual so(3) generators in the defining rep.

$$2F^{(t_a,t_b)} = \epsilon_{abc}t_c \iff [T_a, T_b] = i\epsilon_{abc}T_c$$

3HDM Custodial symmetry test

Custodial symmetry \iff Λ has 3 orthonormal nullvectors v_a

- $L.v_a = M.v_a = 0$
- $2F^{(v_a,v_b)} = \epsilon_{abc}v_c$

²Nishi 2011, 1103.0252

A practical test

Properties

- The numerical prefactor is meaningful (normalized vectors) and excludes the other 3-dimensional reps (e.g. **2+1**)
- so(3) F-products are invariant under rotation of the nullvectors \rightarrow if v_a satisfies the condition so does $R_{ab}v_b$

This is a practical test e.g. can be applied numerically

4HDM

Custodial block

$$C_4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \alpha \\ 0 & 0 & 0 & 0 & -\alpha & 0 \\ 0 & 0 & 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 0 & 0 & 0 \\ 0 & -\alpha & 0 & 0 & 0 & 0 \\ \alpha & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Eigenvectors

$$t=rac{1}{\sqrt{2}}egin{pmatrix} 1 & 0 & 0 & 0 & 0 & -1\ 0 & 1 & 0 & 0 & 1 & 0\ 0 & 0 & 1 & -1 & 0 & 0\ 0 & 0 & 1 & 1 & 0 & 0\ 0 & -1 & 0 & 0 & 1 & 0\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Generate the defining rep. of $so(4) \cong so(3) \oplus so(3)$: $\sqrt{2}F^{(t_a^{\pm},t_b^{\pm})} = \epsilon_{abc}t_c^{\pm}$

$$\sqrt{2}F^{(t_a^{\pm},t_b^{\pm})} = \epsilon_{abc}t_c^{\pm}$$

4HDM

4HDM Custodial symmetry test

Custodial symmetry \iff Λ has 2 sets of 3 orthonormal eigenvectors v_a^{\pm}

- eigenvalues $\pm \alpha$
- $L.v_a^{\pm} = M.v_a^{\pm} = 0$
- $\sqrt{2}F^{(v_a^\pm,v_b^\pm)} = \epsilon_{abc}v_c^\pm$ and $F^{(v_a^\pm,v_b^\mp)} = 0$

Properties

- F-product numerical prefactor excludes other 4-dimensional reps. (e.g. 2+2)
- Based on so(3) F-products \rightarrow invariant under independent rotations of v_a^+ and v_a^-

$$N \geq 5$$

Difficulties

$$C_N = F(\lbrace \alpha_i \rbrace), \quad i = 1, ..., \binom{N}{4}$$

- Eigenvectors t_a depend on α_i for $N \geq 5$
- No eigenvalue pattern for $N \ge 6$

Work in progress

Summary

Take-home messages

- The covariant framework is particularly effective to identify custodial symmetry in NHDM
- In this case eigenvectors span a subalgebra i.e. so(N)
- Simple, practical necessary and sufficient condition for 3HDM and 4HDM

