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1 Introduction
In this report I present the work I did during my internship at the Laboratoire pour la
Physique Théorique et Hautes Énergies (LPTHE) at Sorbonne Université. This internship
lasted from March to July 2020 and was done under the supervision of Yacine Ikhlef and
Benoit Estienne. The topic of the project was Conformal Field Theory (CFT) in the
context of 1+1d quantum critical systems. Out of several project ideas I was given, I chose
to investigate analytical methods used to compute entanglement entropies. The first half
of the internship was spent learning CFT and writing code to simulate the Ising model.
After getting used to the CFT formalism I was able to do several analytical computations.
Using the program I had written I could compare the CFT description with numerical
simulations.

The important theoretical notions encountered during this project are introduced in
Sect. 2. In Sect. 3, analytical computations of entanglement entropy in CFT are presented.
Numerical computations in the Ising model are described in Sect. 4. We conclude in Sect.
5.

2 Theoretical background

2.1 Notions of Conformal Field Theory
We briefly describe the notions of 2d conformal field theory relevant to this project. [1]
and [2] were used as references during the whole project. This section will consist of a
compilation of fundamental results from these references described as I understand them.
It also serves the purpose of introducing the notation used in the rest of the report.

The conformal group consists of all the angle preserving transformations. In 2 dimen-
sions, conformal covariance is very strong and imposes tight constraints on a field theory.
In fact, it leads to large simplifications which make some analytical computations possible.

The building blocks of a CFT are its primary fields which are those fields that transform
as

φ′(w, w̄) =
(
dw

dz

)−h(dw̄
dz̄

)−h̄
φ(z, z̄) (2.1)

under any conformal transformation w = w(z). The numbers h, h̄ are the conformal
dimensions of the primary operator φ. In this project we only considered scalar operators
with h = h̄. For correlation functions of primary field, conformal covariance means that
under a conformal transformation w = w(z)

〈φ1(w1, w̄1)...φn(wn, w̄n)〉D′ =
n∏
i=1

(
dwi
dzi

)−hi(dw̄i
dz̄i

)−h̄i
〈φ1(z1, z̄1)...φn(zn, z̄n)〉D (2.2)

where the subscripts D and D′ indicate the geometry on which the expectation value is
taken. Indeed, in CFT one adopts the active point of view and thinks of a conformal
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transformation as a deformation of the surface. The functional form of 2-point functions of
primary operators is severely constrained by Lorentz invariance and by the scaling implied
by Eq.(2.2). On the complex plane, 2-point functions of primary operators are of the form

〈φ(z1)φ(z2)〉C = |z1 − z2|−4h. (2.3)

In this project we often considered periodic boundary conditions and hence worked with
a cylindrical geometry. Mapping the plane to a cylinder of circumference L, one can
transform Eq.(2.3) using Eq.(2.2) and find

〈φ(w1)φ(w2)〉R×S1 =
[
L

π
sinh π(w1 − w2)

L

]−2h[L
π

sinh π(w̄1 − w̄2)
L

]−2h
. (2.4)

The energy momentum tensor is a very important non-primary operator, it transforms
as

T ′(w) =
(
dw

dz

)−2(dw̄
dz̄

)−2
T (z) + c

12{w, z} (2.5)

where {w, z} = ∂3
zw
∂zw
− 3

2

(
∂2
zw
∂zw

)2
is the so-called Schwarzian derivative and the number c,

called the central charge, is a characteristic of the theory.
The local operators of a CFT form an algebra whose closure under multiplication is

captured by the Operator Product Expansion (OPE)

Oi(w)Oj(z) =
∑
k

Cijk(w − z)Ok(z). (2.6)

For example, the OPE between the energy momentum tensor and a primary operator φ of
dimension h

T (w)φ(z, z̄) = h

(w − z)2φ(z, z̄) + 1
w − z

∂φ(z, z̄) + reg. (2.7)

is very useful.
The structure of the Hilbert space of the theory can be derived from an extension of

the conformal algebra, the Virasoro algebra (Vir)

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0. (2.8)

It is the algebra of the modes of the energy momentum tensor

T (z) =
∑
n∈Z

Ln z
−n−2. (2.9)

There is another copy of this algebra from the anti-holomorphic energy momentum tensor
T̄ (z̄). The Hilbert space is constructed out of representations of Vir×V̄ir. A representation
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of Vir is built as follows. For any primary operator of conformal dimension h there is a
primary state |h〉 = φ(0, 0)|0〉 such that

L0|h〉 = h|h〉
Ln|h〉 = 0 ∀n > 0.

(2.10)

In general to each operators O corresponds a state O(0, 0)|0〉 and vice versa. Now, given
such a primary state, the states ∏

k

L−nk |h〉 , nk ≥ 0 (2.11)

form, by construction, a representation Vh consisting of an infinite tower of states of di-
mensions h+N, N ∈ N. A null vector at level N is a particular superposition of states at
that level that is itself a primary state i.e.

|χ〉 = (#L−N + ...+ #LN−1)|h〉
L0|χ〉 = (h+N)|χ〉
Ln|χ〉 = 0 ∀n > 0.

(2.12)

The so-called Kac parameterization gives the conformal dimensions of the null states at
level N . If the central charge is written c = 1− 6(b−1 − b)2 then the null states at level N
have dimensions

hrs = (rb−1 − sb)− (b−1 − b)2

4 (2.13)

with r, s positive integers satisfying rs = N . The scalar product of a null state with
any state is easily shown to vanish. This means that any correlation function involving
a null state (or equivalently a null operator) vanishes, hence these states are decoupled
from the theory. In addition, null states must be quotiented out of Vh in order for it to be
irreducible (for each null state there is an invariant subspace). The Hilbert space is a sum
of irreducible representations of Vir× V̄ir, one for each primary operator φk

H = ⊕k
Vhk
Hk,null

⊗ V̄hk
H̄k,null

. (2.14)

This knowledge about the structure of the Hilbert space can be used to decompose 4-point
functions 〈φ1|φ2(1, 1)φ3(x, x̄)|φ4〉. By inserting a complete set of states one can show that
this correlation function can be written as a quadratic combination of so-called conformal
blocks F34

12 (k|z)

〈φ1|φ2(1, 1)φ3(x, x̄)|φ4〉 =
∑
k

(Ck
21)∗Ck

34F34
12 (k|x)F̄34

12 (k|x̄). (2.15)

where the index k labels the primary operators of the theory. In Sect.3.3 we discuss how
null vector conditions can be used to derive differential equations for the conformal blocks.
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2.2 Ising model
The Ising model is a classical model of interacting spins, each spin having two states
si = ±1. In the absence of an external field, the energy of a configuration s is

E(s) = −J
∑
〈ij〉

sisj. (2.16)

It is an interesting system to study because in 2d it is exactly solvable and exhibits a
second-order phase transition. The value of the coupling at critical temperature is known
to be

Jc = 1
2 ln(1 +

√
2). (2.17)

At the critical point, the correlation length ξ diverges and the only remaining characteristic
length scale is the lattice spacing a. Therefore all the observables which are insensitive to
the lattice spacing, i.e. the infrared observables, can be described by a scale invariant the-
ory. In fact one assumes the stronger conformal invariance and adopts a CFT description.
For the critical Ising model, the infrared physics can be captured by a CFT with three
primary fields

• identity: φ11(z, z̄), h11 = 0

• spin: φ12(z, z̄) ≡ σ(z, z̄), hσ = 1
16

• energy: φ21 ≡ ε(z, z̄), hε = 1
2

and a central charge c = 1
2 . The central charge can be written in the Kac parameterization

Eq.(2.13) with b =
√

3
2 .

2.3 Entanglement Entropy
Entanglement is a property of quantum systems which are in a state that is not a prod-
uct state. Entangled systems exhibit particular correlations which make entanglement a
central resource in e.g. quantum information. A convenient measure of entanglement is
the entanglement entropy [3]. Given a quantum system partitioned into two subsystems A
and B, the entanglement entropy between A and B is defined as

SA = −Tr ρA ln ρA (2.18)

where ρA = TrB |ψ〉〈ψ| is the reduced density matrix of A when the system is in the state
|ψ〉. Thus entanglement entropy can be seen as the Von Neumann entropy of subsystem
A in a heat bath consisting of B (or vice versa). When A and B are not entangled, the
reduced density matrix ρA is a projector which means its eigenvalues are either 1 or 0 and
therefore SA = 0. Hence A and B entangled corresponds to SA 6= 0 meaning A is observed
to be in a mixed state.
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3 Rényi Entanglement Entropies
The Von Neumann entanglement entropy SA = −Tr ρA ln ρA is difficult to calculate as it
requires the knowledge of the full spectrum of the reduced density matrix. On the other
hand the Rényi entropies

S
(N)
A = − 1

N − 1 ln Tr ρNA (3.1)

turn out to be easier to compute and in general behave similarly as the Von Neumann
entropy, thus providing an interesting alternative measure of entanglement. In addition,
if one computes S(N)

A as an analytic function of N , then the Von Neumann entropy is
recovered in the limit N → 1

lim
N→1

S
(N)
A = − lim

N→1

∂

∂N
ln Tr ρNA = SA (3.2)

3.1 A Replica Trick
A recipe to calculate Tr ln ρNA for integer N was given in [4]. The idea is that one can think
of each element of the reduced density matrix (ρA)αβ = ραγ,βγ as the partition function
of a system where the boundaries in B are identified and the boundaries in A are fixed
to |α〉 and |β〉 ∈ HA. Then taking the trace of ρNA corresponds to the partition function
on a surface obtained by cyclically gluing together N copies of the original surface along
A. If A consists of k disjoints intervals then let the resulting surface be denoted RN,k.
This Riemann surface has N sheets connected by 2k branch points corresponding to the
endpoints [ui, vi] of each interval (see Fig.1). We will refer to this surface as the replicated
surface. Let us denote the partition function on the replicated surface by ZN then

ln Tr ρNA = ZN (3.3)

provided the states are normalized such that the partition function on the initial surface
is unity.

Instead of considering the theory on a complicated Riemann surface, there is another
useful, equivalent, point of view. One can consider the theory on the original surface but
with each degree of freedom replicated N times and an internal ZN symmetry. Such a
theory is referred to as a ZN -orbifold. Each copy can be thought of as living on one sheet
of the replicated surface while the quotient by ZN ensures cyclic invariance. To complete
the equivalence, such a theory must be equipped with so-called twist fields τN , τ̃N . These
operators implement the branch cuts by allowing degrees of freedom from consecutive
replicas to interact.

The correspondence between the two points of view is given by

〈Oi(z, z̄)〉L,RN,k = 〈τN(u1, ū1)τ̃N(v1, v̄1)...τN(uk, ūk)Oi(z, z̄)〉L(N)

〈τN(u1, ū1)τ̃N(v1, v̄1)...τN(uk, ūk)τ̃N(vk, v̄k)〉L(N)
(3.4)
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where the subscript L,RN,k means that the expectation value is to be taken with the
original degrees of freedom on the replicated surface and the subscript L(N) means that
the expectation value is to be taken with the replicated degrees of freedom on the original
surface. We will omit these subscripts when there is no ambiguity. Here Oi is an operator
constructed from degrees of freedom of the ith sheet/replica. The partition function on
RN,k corresponds to a 2k-point correlation function of twist operators

ZN = 〈τN(u1, ū1)τ̃N(v1, v̄1)...τN(uk, ūk)τ̃N(vk, v̄k)〉L(N) (3.5)

Analytical computations performed within this framework are presented in the remainder
of this section.

Figure 1: (Left) Example of a partition of the 1d quantum system where A consists of
2 intervals [u1, v1] and [u2, v2]. (Right) Replicated surface RN,2 corresponding to such a
partition. The points u1, v1, u2, v2 are branch points of order N and the dashed lines
represent branch cuts.

3.1.1 Rényi entropies of a single interval in the vacuum

According to Eq.(3.5), the Rényi entropies of a single interval x ∈ [0, il] in the vacuum can
be calculated as a 2-point function of twist fields. On a cylinder of circumference L, using
Eq.(2.4), we have

〈τN(0, 0)τ̃N(il,−il)〉R×S1 =
[
L

π
sin πl

L

]−4hN
(3.6)

and thus it suffices to calculate the conformal dimension hN of the twist fields τN , τ̃N . This
can be done by considering the vacuum expectation value of the energy momentum tensor
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on the replicated surface

〈T 〉RN,1 = 〈τN(u, ū)τ̃N(v, v̄)ti(w)〉C
〈τN(u, ū)τ̃N(v, v̄)〉C

, i = 1...N (3.7)

where ti(w) is the energy momentum tensor of the ith replica. The complete energy mo-
mentum tensor of the replicated theory T (w) = ∑N

i=1 ti(w) can be used as a probe for the
conformal dimension. Indeed if we let w → u, v, the operator product expansion

T (w)τN(u, ū) =
(

hN
(w − u)2 + 1

w − u
∂

∂u

)
τN(u, ū) (3.8)

and similarly for v, gives

〈τN(u, ū)τ̃N(v, v̄)T (w)〉 =
(

hN
(w − u)2 + 1

w − u
∂

∂u
+ hN

(w − v)2 + 1
w − v

∂

∂v

)
〈τN(u, ū)τ̃N(v, v̄)〉.

(3.9)

Using that on the plane 〈τN(u, ū)τ̃N(v, v̄)〉C = (u− v)−2hN (ū− v̄)−2hN , we have

〈T 〉RN,1 = hN
N

( 1
(w − u)2 −

2
(w − u) + 1

(w − v)2 + 2
(w − v)

)
(3.10)

= hN
N

(u− v)2

(w − u)2(w − v)2 (3.11)

On the other hand, 〈T 〉RN,1 can be calculated directly by performing a conformal transfor-
mation from C to RN,1. If z is the coordinate on the complex plane, the transformation

ξ =
(
z − u
z − v

) 1
N

(3.12)

conformally maps C onto RN,1. Under such a transformation the energy momentum tensor
transforms as

T (ξ) =
(
dz

dξ

)2
T (w) + c

12{z, ξ} (3.13)

Since 〈T (z)〉 = 0 (otherwise translational and rotational invariance would be broken) we
have

〈T 〉RN,1 = c

12{z, ξ} = c

24

(
1− 1

N2

) (u− v)2

(w − u)2(w − v)2 (3.14)

Comparing Eq.(3.14) with Eq.(3.10) yields the conformal dimension of the twist operators
for a theory replicated N times

hN = c

24

(
N − 1

N

)
(3.15)
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Hence the Rényi entropies on the cylinder for a single interval A = [0, l] in the vacuum is

S
(N)
A = − 1

N − 1 lnZN = c

6

(
1 + 1

N

)
ln
[
L

π
sin

(
πl

L

)]
(3.16)

In this simple case, one can even compute the Von Neumann entropy explicitly

SA = lim
N→1

S
(N)
A = − lim

N→1

∂

∂N
lnZN = c

3 ln
[
L

π
sin

(
πl

L

)]
. (3.17)

3.1.2 Rényi entropies of a single interval in an excited state

Here we compute the Rényi entanglement entropy when the system is in a primary state
|φ〉 of conformal dimension h = h̄. Instead of taking vacuum expectation values of twist
operators we must now take expectation values in the state |φ〉 hence

ZN = lim
R→∞

〈Φ(−R,−R)τN(0, 0)τ̃N(il,−il)Φ(R,R)〉R×S1

〈Φ(−R,−R)Φ(R,R)〉R×S1
(3.18)

where Φ = ⊗Nφ is a primary field of conformal dimension Nh in the orbifold. Using the
conformal transformation ξ = L

2π lnω we can express ZN in terms of correlation functions
on the complex plane. Letting M ≡ 2π

L
R and α ≡ 2π l

L
, we have

ZN = lim
M→∞

(
L

2π

)−4hN 〈Φ(e−M , e−M)τN(1, 1)τ̃N(eiα, e−iα)Φ(eM , eM)〉C
〈Φ(e−M , e−M)Φ(eM , eM)〉C

(3.19)

The denominator is simply a 2-point function

〈Φ(e−M , e−M)Φ(eM , eM)〉C = (e−M − eM)−4Nh = (2 sinhM)−4Nh (3.20)

Using Eq.(3.4) we can express the numerator in terms of a correlation function in the
original theory but now considered on the replicated surface RN,1.

〈Φ(e−M , e−M)τN(1, 1)τ̃N(eiα, e−iα)Φ(eM , eM)〉C
= 〈Φ(e−M , e−M)Φ(eM , eM)〉RN,1〈τN(1, 1)τ̃N(eiα, e−iα)〉C

(3.21)

The twist field 2-point function was calculated in the previous section. To calculate the
remaining Φ correlation function we can conformally map RN,1 onto the complex plane
with

z =
(
ξ − 1
ξ − eiα

) 1
N

⇐⇒ ξ = 1− eiαzN
1− zN (3.22)
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This transformation also maps the branch points ξU = 1 and ξV = eiα to zU = 0 and
zV = ∞, respectively. Under this conformal map, the correlation function transforms
covariantly

〈Φ(e−M , e−M)Φ(eM , eM)〉RN,1

=
∏

k=1...N
a=+,−

(
dξ

dz

)−h
zka

(
dξ̄

dz̄

)−h
z̄ka

〈φ(z1−, z̄1−)...φ(zN−, z̄N−)φ(z1+, z̄1+)...φ(zN+, z̄N+)〉C (3.23)

where dξ
dz

= (eiα − 1) NzN−1

(1−zN )2 and the points zk−, zk+ are the 2N images of e−M , e+M under
the conformal map

zk− =
(
e−M − 1
e−M − eiα

) 1
N

, zk+ =
(
eM − 1
eM − eiα

) 1
N

(3.24)

In the end we will be interested in the limit M →∞ of
(
dξ
dz

dξ̄
dz̄

)
zk±

. This limit is harmless
for the points zk− so we can take it at once and obtain

zk− → e−i
α
N rk ,

(
dξ

dz

dξ̄

dz̄

)
zk−

→ N2

4 sin2 α
2

(3.25)

where the rk = ei2π
k−1
N are the N th roots of unity. The points zk+ require some additional

care. One can find the following asymptotic expression

zk+ → rk ,
(
dξ

dz

dξ̄

dz̄

)
zk+

' N2

4 sin2 α
2
e−4M (3.26)

Therefore we have that

〈Φ(e−M , e−M)Φ(eM , eM)〉RN,1

'
[ 4
N

sin2 α

2

]2Nh
e4NhM〈φ(e−i αN r1, e

i α
N r̄1)...φ(e−i αN rn, ei

α
N r̄N)φ(r1, r̄1)...φ(rN , r̄N)〉C

(3.27)

Putting everything together we find

ZN = lim
M→∞

(2e−M sinhM)4Nh
[
L

π
sin π l

L

]−4hN
×
[ 4
N

sin2 π
l

L

]
× 〈φ(e−i αN r1, e

i α
N r̄1)...φ(e−i αN rN , ei

α
N r̄N)φ(r1, r̄1)...φ(rN , r̄N)〉C

(3.28)

The limit M →∞ can now be taken safely and we obtain

ZN =
[
L

π
sin π l

L

]−4hN
×
[ 4
N

sin2 π
l

L

]2Nh

× 〈φ(e−i αN r1, e
i α
N r̄1)...φ(e−i αN rN , ei

α
N r̄N)φ(r1, r̄1)...φ(rN , r̄N)〉C

(3.29)
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In the case of the Ising model the 2N -point functions of the energy are known to be [1]

〈ε(z1, z̄1)...ε(z2N , z̄2N)〉C =
∣∣∣∣det

( 1
zi − zj

)∣∣∣∣ (3.30)

Our final expression for the Ising model on the cylinder is therefore

S
(N)
A = 1

N − 1

( 1
12
(
N − 1

N

)
ln
[
L

π
sin π l

L

]
−N ln

[ 4
N

sin2 π
l

L

]
− ln

∣∣∣∣det
( 1
zi − zj

)∣∣∣∣).
(3.31)

3.1.3 2nd Rényi entropy of 2 intervals in the vacuum

One could partition the 1d quantum system into the union of 2 disjoint intervals and its
complement. In that case, the replica approach becomes significantly more difficult since
the genus of the covering surface increases with N . For N = 2, the covering surface
is a torus which already introduces technical difficulties. Another complication is that
computing Rényi entropies now requires computing 4-point functions of twist operators.
In this section we compute the 2nd Rényi entropy of a generic CFT by considering a
toroidal geometry. The derivation follows what was done in [5] for the Z2-orbifold of a
bosonic string.

We would like to compute

Z2 = 〈τ2(u1, ū1)τ̃2(v1, v̄1)τ2(u2, ū2)τ̃2(v2, v̄2)〉C. (3.32)

whose logarithm will give S
(2)
A . By applying the global conformal transformation w =

v1−u1
v1−v2

z−v2
z−u1 one can map the points u1, v1, u2, v2 to ∞, 1, x = v1−u1

v1−v2
u2−v2
u2−u1

, 0. So without loss
of generality we may only consider the following standard 4-point function

〈τ2(∞,∞)τ̃2(1, 1)τ2(x, x̄)τ̃2(0, 0)〉C ≡ F (x). (3.33)

The derivation proceeds in a similar manner as for the Rényi entropy of a single interval.
By considering the vacuum expectation value of the energy momentum tensor on the
replicated surface, one can extract the logarithmic derivative of F (x). Indeed, using the
OPE Eq.(2.7), we have

〈t(z)〉R2,2 = 〈τ2(∞,∞)τ̃2(1, 1)τ2(x, x̄)t(z)τ̃2(0, 0)〉C
〈τ2(∞,∞)τ̃2(1, 1)τ2(x, x̄)τ̃2(0, 0)〉C

= 1
F (x)

(
h2

(z − x)2 + 1
(z − x)

∂

∂x
+ reg.

)
F (x)

= h2

(z − x)2 + 1
z − x

∂ lnF (x)
∂x

+ reg..

(3.34)
As before, the vacuum expectation value of the energy momentum tensor on the replicated
plane and on the torus can be related by performing a conformal transformation. The
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Figure 2: A torus with modular parameter τ . Opposites sides are to be identified.

Weierstrass ℘ function provides a conformal map between the replicated plane R2,2 and
the torus T 2

z(ω) = ℘(ω)− e1

e2 − e1
, x = e3 − e1

e2 − e1
(3.35)

where z and ω are the coordinates on the replicated plane and on the torus. Topologically,
a torus is a parallelogram with opposite edges identified. One may take the length of the
sides of the parallelogram to be 1 and τ (see Fig.2). In Eq.(3.35), the numbers e1, e2 and e3
are given by ℘(1

2), ℘(1
2τ) and ℘(1

2(1+ τ)), respectively, and they satisfy e1 +e2 +e3 = 0. In
our case the modular parameter τ is related to the branch point x by the following relation

x =
(
θ3(τ)
θ4(τ)

)4

=
∞∏
n=1

(
1 + qn−

1
2

1− qn− 1
2

)8

, q = e2iπτ . (3.36)

We can use the conformal transformation Eq.(3.35) to relate the energy momentum tensor
on the replicated plane and on the torus

〈T 〉T 2 =
(
dz

dω

)2
〈t(z)〉+ c

12{z, ω}. (3.37)

This can be put into a more useful form by using some properties of the ℘ function. First,
the Weierstrass ℘ function satisfies a differential equation from which we can express the
derivative of z [6]

d℘

dω
=
√

4(℘− e1)(℘− e2)(℘− e3) =⇒ dz

dω
= 2(e2 − e1) 1

2

√
(z − 1)(z − x)z. (3.38)

The above relation between ℘ and ℘′ can be used to simplify the Schwarzian derivative
{z, ω} = {℘, ω}. By differentiating Eq.(3.38) one finds

℘′′ = 6℘2 + 2(e1e2 + e2e3 + e3e1)
℘′′′ = 12℘℘′

(3.39)

Using these relations, the term involving the Schwarzian derivative can be written
c

12{z, ω} = c℘− c

8

(
d

dω
ln℘′

)2
= c(e2 − e1)z + ce1 −

c

8

(
d

dω
ln z′

)2
(3.40)
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On the torus, we also have the following expression for the vacuum expectation value of
the energy momentum tensor

〈T 〉T 2 = 2iπ ∂

∂τ
Zτ (3.41)

where Zτ is the partition function on the torus. Putting everything together we can express
the vacuum expectation value of the energy momentum tensor on the plane as

〈T (z)〉 = 2
(
dω

dz

)2[
〈T 〉T 2 − c

12{z, ω}
]

= 2
(
dω

dz

)2[
2iπ ∂

∂τ
Zτ − c(e2 − e1)z − ce1 + c

4

(
d

dω
ln z′

)2]
=

2iπ ∂
∂τ
Zτ − c(e2 − e1)z − ce1

2(e2 − e1)(z − 1)(z − x)z + c

16

( 1
z − 1 + 1

z − x
+ 1
z

)2

(3.42)

Near z = x we have

〈T (z)〉 = c

16
1

(z − x)2 + 1
z − x

[2iπ ∂
∂τ
Zτ − c(e2 − e1)z − ce1

2(e2 − e1)(x− 1)x + c

8

( 1
x− 1 + 1

x

)]
+ reg..

(3.43)

Comparing with Eq.(3.34), one finds for the logarithmic derivative of the twist 4-point
function

d

dx
lnF (x) =

2iπ ∂
∂τ
Zτ − c(e2 − e1)z − ce1

2(e2 − e1)(x− 1)x + c

8

( 1
x− 1 + 1

x

)
(3.44)

and of course, the conformal dimension of the twist field h2 = c
16 is recovered. As it is

there is some implicit x dependence in Eq.(3.43) that comes from e1, e2 and Zτ . This x
dependence can be made explicit by using the identities

1
4(e2 − e1)(x− 1)x = 1

4iπ
dτ

dx
e2

e1
= x− 2
x+ 1

(3.45)

Finally one arrives at a simple differential equation for the twist 4-point function
d

dx
lnF (x) = − c

24

( 1
x− 1 + 1

x

)
+ d

dx
lnZτ . (3.46)

After an elementary integration this yields the twist 4-point function

〈τ2(∞,∞)τ̃2(1, 1)τ2(x, x̄)τ̃2(0, 0)〉 = cst× Zτ × |x|−
c

12 |x− 1|− c
12 . (3.47)

Now obtaining the Rényi entropy S(2)
A is only a matter of algebra. All that is needed is to

re-express this result in terms of the end points of the two intervals u1, v1, u2, v2 with a
conformal transformation and to take the logarithm.
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3.2 Geometrical picture : conical singularities
One could compute twist correlation functions by directly computing the partition function
on the relevant Riemann surface. The Riemann surface one has to consider has conical
singularities corresponding to twist field insertions in addition to any singularities of the
original surface (e.g. the Riemann sphere has a conical singularity at ∞). An algorithm
to regularize these singularities and calculate the partition function was presented in [7]

• Cut out holes around the conical singularities

• Conformally map the cut surface onto the covering surface (a surface obtained by
”unfolding” the sheets)

• Fill the images of the holes with flat patches

• Relate the resulting metric to the flat metric by a Weyl transformation: ds2 = eφdŝ2

• Compute the Liouville action SL[φ] = c
96π

∫
M d2z ĝµν∂µφ∂νφ.

The desired partition function is then given by

Zg = eSL[φ]Zĝ (3.48)

where g is the metric on the image of the cut surface and ĝ is the flat metric on the covering
surface. This approach thus relies on the known transformation of the partition function
under a Weyl transformation.

Let us illustrate this procedure for the calculation of the twist 4-point function

〈τ2(z∞, z̄∞)τ̃2(1, 1)τ2(x, x̄)τ̃2(0, 0)〉 (3.49)

where the limit z → z∞ will be taken at the end of the calculation. In that case it boils
down to computing the partition function on a 2-sheeted Riemann surface which has conical
singularities at z∞, 1, x and 0. We cut out holes of radius ε around these points. There is
also the conical singularity of the Riemann sphere at ∞. We cut a hole of radius δ around
this point. Now if z is the coordinate on this surface, the map z(ω) that performs the
uniformization is given by

dz

dω
= α

[
(z − z∞)(z − 1)(z − x)z

] 1
2 (3.50)

The covering surface parametrized by ω is a torus and, in the limit z∞ →∞, z(ω) is given
as in Eq.(3.35) by the Weierstrass ℘ function. The torus thus obtained inherits the metric
ds2 = dzdz̄ =

∣∣∣ dz
dω

∣∣∣2dωdω̄ outside the holes and a flat metric inside the holes. This metric
is related to the flat metric on the torus by a Weyl transformation eφ where

φ = ln dz

dω
+ ln dz̄

dω̄
(3.51)
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outside the holes. We can now compute the terms of the Liouville action SL[φ] that
contribute to the 4-point function. Since φ is the sum of a holomorphic and an anti-
holomorphic function ĝµν∂µ∂νφ = 4∂ω̄∂ωφ = 0. Hence, using Stokes theorem, the only
contribution to the Liouville action comes from the boundaries of the surface i.e. the
boundaries of the holes

SL[φ] = c

96π

∫
∂M

dlµĝ
µνφ∂νφ (3.52)

Expressing everything in complex coordinates for a hole of radius r around 0 we find

gµνdlµ∂ν = rdθ
(
− z

|z|
∂z −

z̄

z̄
∂z̄
)

dθ = −idz
z

= i
dz̄

z̄

→ SL[φ] = ic

96π

[ ∫
∂M

dzφ∂zφ− c.c
] (3.53)

To continue we only need the dominant part of φ near each of the singularities. We show
the calculation for the hole around z = x.

dz

dω
≈ α

[
(z − x)(x− z∞)(x− 1)x

] 1
2

φ ≈ ln
(
|α|2|z − x||x− z∞||x− 1||x|

)
∂zφ ≈

1
2(z − x)

(3.54)

Writing z = x+ εeiθ we have the following contribution to the Liouville action

SL(z = x) = 2× ic

96π

∫ 4π

0
iεeiθdθ

1
2εeiθ ln

(
|α|2ε|x− z∞||x− 1||x|

)
= − c

24 ln
(
|α|2ε|x− z∞||x− 1||x|

) (3.55)

where the integration is between 0 and 4π because it takes two turns of the z variable to
go around the hole on the covering surface. The same calculation gives the contribution
from the other singularities at 0, 1 and z∞

SL(z = 0) = − c

24 ln
(
|α|2ε|z∞||x|

)
SL(z = 1) = − c

24 ln
(
|α|2ε|1− z∞||1− x|

)
SL(z = z∞) = − c

24 ln
(
|α|2ε|z∞ − 1||z∞ − x||z∞|

)
.

(3.56)

There is also a contribution from the singularity at z =∞. For z →∞ we have
dz

dω
≈ αz2

φ ≈ ln(|α|2|z|4)

∂zφ ≈
2
z

(3.57)

15



and therefore, parameterizing the contour as 1
z

= δeiθ, we find

S(z =∞) = 2× ic

96π

∫ 4π

0

−i
δ
e−iθ

2δ
e−iθ

ln(|α|2δ−4)

= c

6 ln(|α|2δ−4)
(3.58)

The complete Liouville action is thus

SL[φ] = S(z = z∞) + S(z = 1) + S(z = x) + S(z = 0) + S(z =∞)

= − c

12 ln |x||1− x| − c

6 ln ε− 2
3 ln δ − c

4 ln |z∞|
(3.59)

There are several regulation dependent terms in this equation. The terms involving ε and
z∞ disappear from the 4-point function after renormalization of the twist fields and of
the vacuum state. The divergence in δ, which comes from the conical singularity of the
Riemann sphere, is precisely the same as that of the partition function on the sphere. It
therefore cancels when taking the ratio with the partition function on the sphere Zδ. The
final result is

〈τ2(∞,∞)τ̃2(1, 1)τ2(x, x̄)τ̃2(0, 0)〉 = eSL[φ]Zτ
Z2
δ

= cst× |x|−
c

12 |1− x|− c
12 × Zτ . (3.60)

So using this completely geometric approach we were able to recover the previously derived
twist 4-point function.

3.3 Algebraic picture : null vectors
There is another approach that can be used to compute twist 4-point functions. The idea is
to fully exploit the algebraic structure of the orbifold CFT [8]. In the same way the Virasoro
algebra is used to construct the Hilbert space of a CFT, the larger orbifold Virasoro algebra
can be used to construct the Hilbert space of the orbifold CFT. In particular null vectors
equations can also be used to derive ordinary differential equations for 4-point functions.
In the Ising model, the identity operator φ11 has a null vector at level 1 and level 6 as can
be seen from the Kac parametrization Eq.(2.13). The null vector conditions are

L−1φ11 = 0
(108L−6 + 264L−4L−2 − L2

−3 − 64L3
−2)φ11 = 0

(3.61)

To these null vectors correspond null vectors for the twist field in the orbifold. Using
the differential action of orbifold Virasoro operators inside the twist 4-point function, the
following ordinary differential equation was derived in [8](

(x− 1)3∂3
x + 33(2x− 1)

11x (x− 1)2∂2
x +3(192x(x− 1) + 5)

256x2 (x− 1)∂x

+ 15(2x− 1)
4096x3

)
G(x) = 0

(3.62)
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The three linearly independent solutions of this equation are the three conformal blocks
F ττττ (1|x), F ττττ (ε|x) and F ττττ (σ|x). In the previous sections, we have found 〈ττττ〉 ∝
|x|− 1

24 |1−x|− 1
24Zτ so by making the change of function G(x) = x−

1
48 (1−x)− 1

48χ(x) we can
access the building blocks of the partition function on the torus, the Virasoro characters
χr,s

Zτ = χ1,1χ̄1,1 + χ1,2χ̄1,2 + χ2,1χ̄2,1

χr,s(q) = TrVr,sqL0− 1
48 = q−

1
48 +hr,s

∑
n≥0
N (r,s)
n qn (3.63)

where q(x) = e2iπτ(x). As can be seen from Eq.(3.63), N (r,s)
n is the number of (physical)

states at level n in Vr,s. The equation satisfied by the characters was also given in [8](
(x− 1)3∂3

x + 2(2x− 1)
x

(x− 1)2∂2
x +391x(x− 1) + 7

192x2 (x− 1)∂x

+ 23(2− x)(x+ 1)(2x− 1)
243x3

)
χ(x) = 0

(3.64)

We solve this equation around the regular singularity x = 1 by looking for a power series
solution as in [2]. To do so it is more convenient to express Eq.(3.64) in terms of the
differential operator θ ≡ (x− 1)∂x whose eigenfunctions are (x− 1)α.(

θ3 + q1(x)θ2 + q2(x)θ + q3(x)
)
C(x) = 0

q1(x) = 2(2x− 1)
x

− 3

q2(x) = 391x(x− 1) + 7
192x2 − 2(2x− 1)

x
+ 2

q3(x) = 23(2− x)(x+ 1(2x− 1))
243x3

(3.65)

Writing the solution χ(x) = (x − 1)λ∑n≥0 an(x − 1)n, the allowed exponents λ are the
solutions of the characteristic equation

Q(λ) ≡ λ3 + q1(1)λ2 + q2(1)λ+ q3(1) = λ3 − λ2 + 7
192λ+ 23

6912 = 0

λ1 = −1
24 , λ2 = 1

12 , λ3 = 23
24 .

(3.66)

For each exponent, the coefficients of the power series are solutions of the following trian-
gular linear system of equations

k∑
n=0

Qk−n(λ+ n)an = 0 , k ∈ N (3.67)

where Q0(λ) ≡ R(λ) and for n ≥ 1, Qn(λ) ≡ 1
n!

dn

dxn

(
q1(x)λ2 + q2(x)λ + q3(x)

)∣∣∣
x=1

. Since
the first equation is automatically satisfied R(λ)a0 = 0, we can take a0 = 1. For each
exponent, we solved this system of equations in Mathematica for the first eight coefficients
and the results are shown below
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λ = 23
24

χ2,1(x) = (x− 1) 23
24

[
1− 23

48(x− 1) + 1357
768 (x− 1)2 − 12029

6912 (x− 1)3 + 989
576(x− 1)4

− 1955
1152(x− 1)5 + 11615

1912 (x− 1)6 − 3841
2304(x− 1)7 + 1909

1152(x− 1)8 + ...

]
(3.68)

λ = 1
12

χ1,2(x) = (x− 1) 1
12

[
1− 1

24(x− 1) + 25
1152(x− 1)2 − 1225

82944(x− 1)3 + 89425
7962624(x− 1)4

− 1734845
191102976(x− 1)5 + 209916245

27518828544(x− 1)6

− 4348265075
660451885056(x− 1)7 + 734856797675

126806761930752(x− 1)8 + ...

]
(3.69)

λ = − 1
24

χ1,1(x) = (x− 1)− 1
24

[
1 + 1

48(x− 1)− 19
2304(x− 1)2 + 799

165888(x− 1)3 − 52255
15925248(x− 1)4

+ 928739
382205952(x− 1)5 − 104386667

55037657088(x− 1)6

+ 2027593997
1320903770112(x− 1)7 − 323535808277

253613523861504(x− 1)8 + ...

]
(3.70)

We can find the first few coefficients of the characters N (r,s)
n by expressing these solutions

in terms of q using Eq.(3.36). Expanding x(q) around q = 0 gives

x(q)− 1 = 16q 1
2
(
1 + 8q 1

2 + 44q + 192q 3
2 + 718q2 + 2400q 5

2 + 7352q3 + 20992q 7
2 + 56549q4 + ...

)
(3.71)

Performing the substitution at order O(q4) we recover the Virasoro characters of the Ising
model as given in e.g. [1].

χ1,1(q) = 1 + q2 + q3 + 2q4 + ...

χ1,2(q) = 1 + q + q2 + 2q3 + 2q4 + ...

χ2,1(q) = 1 + q + q2 + q3 + 2q4 + ...

(3.72)
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4 Numerical simulations
We now present a numerical simulation of the critical Ising model using the transfer ma-
trix method. We consider the Ising model on a cylindrical lattice of a circumference La
and length Ma, with a the lattice spacing. Now to calculate expectation values in this
2d statistical system we need to be able to perform Boltzmann-weighted sums over all
configurations. It is very useful to think of the longitudinal direction as imaginary time
and work with a 1d quantum system consisting of a loop of L spins. The space of states
of this 1d system is 2L dimensional and we write the states as

|s〉 , s ∈ {0...2L − 1} (4.1)

A one-to-one correspondence between the integer label s and a configuration of the spins
is naturally given by the binary expression of s.

The transfer matrix T is the (imaginary) time evolution operator of the 1d system

Tss′ =
(
e−βH

)
ss′

=
L∏
k=0

e
J
2 sjsj+1e

J
2 s
′
js
′
j+1eJsjs

′
j . (4.2)

Where the inverse temperature β has been absorbed in the coupling constant J . T acts on
all the quantum states of the L spins so it is a 2L×2L matrix. The quantum Hamiltonian H
is that of the transverse Ising chain. With this choice each matrix multiplication involving
T performs the desired Boltzmann-weighted sum over the states of one slice. The partition
function can then be computed as

Z = 〈bl|TM |br〉 (4.3)

for left and right boundary conditions |bl〉 and |br〉 or Z = TrTM for periodic boundary
conditions. Expectation values of operators in the 2d classical system are calculated in the
1d quantum system using

〈O(m,n)〉 = 〈bl|T
M
2 O(m,n)T M

2 |br〉
〈bl|TM |br〉

(4.4)

where O(m,n) = T−mO(0, n)Tm is an operator on the mth slice acting on the spin n.
As L grows, it quickly becomes computationally expensive to construct and handle

the transfer matrix. The situation can be improved by noting that the knowledge of the
full transfer matrix is not needed but only its action on an arbitrary vector. This greatly
improves the memory usage by letting the program only use objects of size 2L instead
of 22L. The action of the transfer matrix can be broken down into the action of simple
elementary matrices as

T |s〉 =
( L∏
j=0

pj

)( L∏
j=0

qj

)( L∏
j=0

pj

)
|s〉 (4.5)
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with
pj|s〉 = e

J
2 sjsj+1|s〉

qj|s〉 = eJ |s〉+ e−J |s̃(j)〉
(4.6)

and |s̃(j)〉 denotes the state s with the jth spin flipped. The transfer matrix method
implemented by elementary matrices is the core of the program written for this project
(the code is available in Appendix A).

4.1 Vacuum energy and the central charge
From the eigenvalues of the transfer matrix one gets access to the energy spectrum of
the quantum model. The two largest eigenvalues, corresponding to the first two energy
eigenvalues were extracted using algorithms from [9]. The corresponding eigenstates were
also computed. The algorithm is the following

• Generate a normalized random state |x0〉

• T |xn〉
||T |xn〉|| = |xn+1〉 , λ

(n)
0 = ||T |xn〉||

• Repeat until || |xn+1〉 − |xn〉 || reaches the desired precision.

λ
(n)
0 and |xn〉 converge to the largest eigenvalue and corresponding eigenvector λ0, |0〉. To

find the second eigenvector the algorithm is the same except that instead of iterating the
transfer matrix T we project onto the subspace orthogonal to |0〉 at each step by iterating
TP where P = 1− |0〉〈0|. Using projectors, it is also possible to compute eigenvectors in
the even or odd Z2 sector. If we let R be the matrix that flips all the spins then 1±R

2 is the
projector onto the even/odd sector.

From the finite-size scaling of the vacuum energy one can extract the central charge
of the underlying CFT. This is a good consistency check, making sure that the simulated
system is indeed described by the expected CFT. The following relation is expected from
CFT [1]

− ln λ0(L) = f0L−
πc

6L (4.7)

We computed λ0 for systems of size between L = 10 and L = 16 with a convergence criterion
|| |xn+1〉 − |xn〉 || < 10−8. The values are presented in Table 1. Fitting these values with
Eq.(4.7), we find c ≈ 0.503. This is perfectly consistent with the CFT description of the
critical Ising model which has central charge c = 1

2 .

4.2 2-point functions and conformal dimensions
One can also estimate the conformal dimensions of operators by computing their 2-point
functions. Indeed, on the cylinder, the CFT prediction for the 2-point function of an
operator φ with conformal dimension h = h̄ is
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L 10 11 12 13 14 15 16
Ê0 = − ln λ0 -0.509 -0.555 -0.602 -0.648 -0.695 -0.742 -0.790
Ê1 = − ln λ1 0.114 0.011 -0.081 -0.167 -0.248 -0.325 -0.398
ĥε = − L

4π ln λ1
λ0

0.496 0.496 0.497 0.498 0.498 0.498 0.498

Table 1: Numerical results for the energies of the vacuum and of the first excited states
for different system sizes. The third row shows an estimation of the conformal dimension
of the energy operator.

〈φ(il,−il)φ(0, 0)〉 =
[
L

π
sin πl

L

]−4h
. (4.8)

The spin 2-point function was computed for various separations l and is shown in Fig.3.
Fitting with the CFT prediction Eq.(4.8) we find hσ ≈ 0.063 which is about 1% from the
theoretical value hσ = 1

16 . To compare results for different sizes we remove the expected size
dependent multiplicative constant (L

π
)−4hσ . Thus it can be seen that the CFT description

is excellent except for l
L
≈ 0 ∼= 1 which corresponds to separations comparable to the

lattice spacing. This is expected since the CFT description is valid as long as the lattice
spacing can be neglected.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
/L

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
CFT

Figure 3: Comparison of the CFT prediction Eq.(4.8) (black line) and numerical compu-
tation (dots) for the spin 2-point function on the circumference of a cylinder of size L.
Different colored dots correspond to different system sizes. Results for L = 13 (blue), 14
(yellow), 15 (green) and 16 (red) are shown on this figure.

The conformal dimension of the energy operator could be computed in a similar fashion
from the energy 2-point function. Alternatively it can be computed from the finite-size
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scaling of the gap between the vacuum energy and the first excited state. Indeed, the first
excited state in the even Z2 sector is |ε〉 = ε(0, 0)|0〉. From the quantum Hamiltonian on
the cylinder H = 2π

L
(L0 + L̄0 − c

12) we have

E1 − E0 = − ln λ1

λ0
= 4π

L
hε (4.9)

where we have just used L0|ε〉 = L̄0|ε〉 = hε|ε〉. Performing the computation using data
from Table 1 yields hε ≈ 0.497 consistent with the expected theoretical value hε = 1

2 .

4.3 Entanglement entropies
In this section we describe the numerical computation of entanglement entropies in the
Ising model. First we partition the Hilbert space as A×B. In these computations we only
considered the case where A consists of the states of a single interval of size l. If we let
{|ai〉}i=0...2l and {|bi〉}i=0...2L−l be spin bases in A and B then we can write states as

|x〉 =
∑
s

xs|s〉 =
2l∑
i=0

2L−l∑
k=0

xik|aibk〉 (4.10)

with the components being related by xik = xs ⇐⇒ s = i+ 2lk. We calculate ρA directly
as

(ρA)ij = TrB|x〉〈x| =
∑
k

〈aibk|x〉〈x|ajbk〉 =
∑
k

xikx
∗
jk. (4.11)

This is of course more efficient than computing the full density matrix and then tracing
over B. Having computed the reduced density matrix we can compute the entanglement
entropies using the formulas given in Sect.3.

Numerical computations of the 2nd Rényi entropy in the vacuum and in the excited
state |ε〉 are shown in Fig. 4 and 5. To allow the comparison of results for different sizes
we subtract the L dependent constant expected from the CFT predictions Eq.(3.16) and
(3.31). In both cases, the agreement with the CFT prediction is excellent. This is quite
remarkable since (i) the size of the lattice is rather modest (≤ 16 × 16 sites) and (ii) a
priori the CFT model we are using describes the low-energy physics of the critical Ising
model on an infinite square lattice.

22



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
/L

0.25

0.30

0.35

0.40
S(2

)
A

CFT

Figure 4: Comparison of the CFT prediction Eq.(3.16) (black line) and numerical compu-
tation (dots) for the 2nd Rényi entropy in the vacuum state. Results for L = 13 (blue), 14
(yellow), 15 (green) and 16 (red) are shown on this figure.
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Figure 5: Comparison of the CFT prediction Eq.(3.31) (black line) and numerical com-
putation (dots) for the 2nd Rényi entropy in the state |ε〉. Results for L = 13 (blue), 14
(yellow), 15 (green) and 16 (red) are shown on this figure.
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5 Conclusion
The rich structure of 2d CFTs enables one to choose between several analytical methods to
compute Rényi entanglement entropies. We explored the replica approach under different
lights, -with a geometrical method formulated in terms of Riemann surfaces with conical
singularities, -with an algebraic method taking advantage of the orbifold Virasoro algebra
and with a hybrid formalism alternating the geometric and orbifold points of view. The
results obtained within CFT agree very well with simulations of the Ising model on a
lattice, even for relatively small systems. Such a good agreement is quite remarkable since
CFT only captures the infrared physics of the infinite Ising model.

With more time it would have been interesting to further explore the algebraic pic-
ture and orbifold algebras. One could also consider numerically computing entanglement
entropies in other systems and for more complicated partitions.
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A Appendix: Python Code

1 from __future__ import division
2 import numpy as np
3 from numpy import random as rd
4 from scipy import linalg
5

6 ##### Basic setup of the Ising model on the cylinder #####
7

8 # Criticial value of the coupling
9 J = 0.5* np.log (1+ np.sqrt (2))

10

11 #Spin chain object with a configuration and size attributes
12 class Col:
13 def __init__ (self , size , config):
14 self.size = size
15 self.config = config
16

17 # Configurations are labeled by an integer k=0 ,... ,2ˆN-1
18 # Conversion of a configuration label k into column vector of

up/down spins
19 # uses the binary expression of k
20 # Ex: N=6 spins , configuration 42=101010 -> (+-+-+-)
21 def give_config (self):
22 form = ’{:0 >%s}’ %str(self.size)
23 c = form.format(format(self.config ,’b’))
24 binconfig = map(int ,c)
25 for n, i in enumerate ( binconfig ):
26 if i == 0:
27 binconfig [n] = -1
28 return binconfig
29

30 def qstate(self):
31 # returns the quantum state corresponding to a given

configuration
32 qstate = np.zeros (2** self.size)
33 qstate[self.config] = 1
34 return qstate
35

36 def spinflip (self ,site):
37 #flips one spin of a given quantum state
38 if self. give_config ()[site ]== -1:
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39 self.config +=2**( self.size -site -1)
40 else:
41 self.config += -2**( self.size -site -1)
42 return self.qstate ()
43

44

45 def interact (s1 ,s2):
46 # Interaction function . Energies are shifted by 1J for

convenience
47 if s1*s2 ==1:
48 E = 0
49 else:
50 E = -2
51 return E
52

53 ##### Transfer matrix #####
54

55 def p_on_x(size , site , x):
56 #Action of the elementary matrix p
57 #Recall Boltzmann weights : (1,exp(-2J))
58 px=np.zeros (2** size)
59 c=Col(size ,0)
60 for i in range (2** size):
61 c.config=i
62 s=c. give_config ()
63 px[i]=x[i]*np.exp (0.5*J* interact (s[site],s[( site +1)%

size ]))
64 return px
65

66 def q_on_x(size , site , x):
67 #Action of the elementary matrix q
68 qx=np.zeros (2** size)
69 c=Col(size ,0)
70 for i in range (2** size):
71 c.config=i
72 qx[i]+=x[i]*( np.exp(J* interact (1 ,1)))+x[i-c.

give_config ()[site ]*2**(c.size -site -1) ]*np.exp( interact
(1,-1)*J)

73 return qx
74

75 def pinv_on_x (size , site , x):
76 px=np.zeros (2** size)
77 c=Col(size ,0)
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78 for i in range (2** size):
79 c.config=i
80 s=c. give_config ()
81 px[i]+=x[i]*np.exp ( -0.5*J* interact (s[site],s[( site +1)%

size ]))
82 return px
83

84 def qinv_on_x (size , site , x):
85 qx=np.zeros (2** size)
86 c=Col(size ,0)
87 for i in range (2** size):
88 c.config=i
89 qx[i]+=x[i]*(1/(1 - np.exp (2*J* interact (1,-1))))*(np.exp

(J* interact (1 ,1))) - x[i-c. give_config ()[site ]*2**(c.size -
site -1) ]*np.exp( interact (1,-1)*J)

90 return qx
91

92 def T_on_x(size ,x):
93 #Action of the transfer matrix from the elementary matrices p,

q
94 for i in range(size):
95 x = p_on_x(size , i, x)
96 for j in range(size):
97 x = q_on_x(size , j, x)
98 for k in range(size):
99 x = p_on_x(size , k, x)

100 return x
101

102 def Tinv_on_x (size ,x):
103 for i in range(size):
104 x = pinv_on_x (size , size -1-i, x)
105 for j in range(size):
106 x = qinv_on_x (size , size -1-j, x)
107 for k in range(size):
108 x = pinv_on_x (size , size -1-k, x)
109 return x
110

111 def sigma_on_x (size , site , x):
112 #Action of the spin operator S(0, site)
113 sx=np.zeros (2** size)
114 c=Col(size ,0)
115 for i in range (2** size):
116 c.config=i
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117 sx[i]=x[i]*c. give_config ()[site]
118 return sx
119

120 def S_on_x(size ,m,n,x):
121 # Heisenberg picture spin operator S(m,n)
122 sx = x
123 c = Col(size ,0)
124 for i in range(m):
125 sx = T_on_x(size ,sx)
126 for j in range (2** size):
127 c.config = j
128 sx[j] = x[j]*c. give_config ()[n]
129 for k in range(m):
130 sx = Tinv_on_x (size , sx)
131 return sx
132

133 def Z2_on_x (size , x):
134 #Z_2 inversion , all the spins are flipped
135 xflipped =np.zeros (2** size)
136 for k in range (2** size):
137 xflipped [k]=x[-k -1]
138 return xflipped
139

140

141 def dom_eval (size , prec , Z2project ):
142 # Returns the largest eigenvalue of the transfer matrix and its

eigenvector
143

144 new_vect = rd.rand (2** size)
145 delta = 1
146 iterations = 0
147

148 while delta > prec:
149 old_vect = new_vect
150 if Z2project == True:
151 # Projection onto the even Z_2 sector
152 new_vect = 0.5* new_vect + 0.5* Z2_on_x (size ,

new_vect )
153

154 new_vect = T_on_x(size , new_vect )
155 lambda0 = np.sqrt(np.dot(new_vect , new_vect ))
156 new_vect = (1/ np.sqrt(np.dot(new_vect , new_vect )))*

new_vect
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157 delta = np.sqrt(np.dot (( new_vect - old_vect ), (
new_vect - old_vect )))

158 iterations +=1
159

160 print(np.log( lambda0 )/size , delta , iterations )
161 return lambda0 , new_vect
162

163 def subdom_eval (size , prec , Z2project ):
164 # Returns the first two largest eigenvalue of the transfer

matrix and their eigenvectors
165

166 delta = 1
167 iterations = 0
168 new_vect = rd.rand (2** size)
169 lambda0 , u0 = dom_eval (size , prec , Z2project )
170

171 while delta > prec:
172 old_vect = new_vect
173 new_vect = T_on_x(size , new_vect )
174 if Z2project == True:
175 new_vect = 0.5* new_vect + 0.5* Z2_on_x (size ,

new_vect )
176

177

178 new_vect = new_vect - np.dot(u0 , new_vect )*u0
179 lambda1 = np.sqrt(np.dot(new_vect , new_vect ))
180 new_vect = (1/ lambda1 )* new_vect
181

182 delta = np.sqrt(np.dot (( new_vect - old_vect ), ( new_vect
- old_vect )))

183

184 iterations +=1
185 print(np.log( lambda1 )/size , delta , iterations )
186 return lambda1 , new_vect , lambda0 , u0
187

188 ##### Spin 2-point functions in the vacuum #####
189

190 def calc_Z(L, M, prec):
191 # returns the partition function and the vacuum state
192 if M%2==1:
193 print("error M must be even")
194 else:
195 v = u = dom_eval (L, prec , False)[1]
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196 for i in range(M):
197 u = T_on_x(L, u)
198 Z = np.vdot(v,u)
199 return Z, v
200

201 def twopfunc (L, M, i, j, k, l, prec):
202 # Computes <0|S(i,j)S(k,l)|0> for a cylinder of circumference L

and length M
203 if M%2==1:
204 print("error M must be even")
205 else:
206 Z, v = calc_Z(L, M, prec)
207 u = v
208 for a in range(M//2):
209 u = T_on_x(L,u)
210 u = S_on_x(L, k, l, u)
211 u = S_on_x(L, i, j, u)
212 for b in range(M//2):
213 u = T_on_x(L, u)
214 c = (1/Z)*np.vdot(v, u)
215 return c
216

217 def fulltwopfunc (L, M, prec):
218 # Computes <0|S(0 ,0)S(0,l)|0> along a circumference of the

cylinder
219 if M%2==1:
220 print("error M must be even")
221 else:
222 c=np.zeros(L)
223 Z, v = calc_Z(L, M, prec)
224 for l in range(L):
225 u = v
226 for a in range(M//2):
227 u = T_on_x(L,u)
228 u = S_on_x(L, 0, l, u)
229 u = S_on_x(L, 0, 0, u)
230 for b in range(M//2):
231 u = T_on_x(L, u)
232 c[l] = (1/Z)*np.vdot(v, u)
233 return c
234

235 ##### Reduced density matrix #####
236
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237 # partition of H = 0...m...L-1 in AxB with A=0...m-1, B=m...L
-1 , dim(A)=m, dim(B)=L-m, rho_A: 2**m x 2**m

238

239 def reduced_x (L, sizeofA , x, i):
240 #Given a state x, only keeps the components x_ik pour k

=0...2**L-m
241 x_red =[]
242 for j in range (2**L):
243 if (j-i)%2** sizeofA ==0:
244 x_red.append(x[j])
245 return np.array(x_red)
246

247 def red_dens_mat (x, m):
248 # Compute the reduced density matrix rho_A
249 L = int(np.log(np.size(x))/np.log (2))
250 rhoA = np.zeros ([2**m, 2**m])
251

252 for i in range (2**m):
253 for j in range (2**m):
254 x1 = reduced_x (L, m, x, i)
255 x2 = reduced_x (L, m, x, j)
256 rhoA[i,j] = np.dot(x1 , x2)
257 return rhoA
258

259 ##### Von Neumann entropy #####
260

261 def vnentropy (state , l):
262 # Computes the VN entropy from the eigenvalues of rhoA
263 L=int(np.log(np.size(state))/np.log (2))
264 rho = red_dens_mat (state , l)
265 ev = linalg. eigvalsh (rho)
266 condition = ev >= 0
267 #Some eigenvalues of rhoA maybe slightly negative due to

machine precision
268 #these are discarded
269 S = np.sum(-ev[ condition ]*np.log(ev[ condition ]))
270 return S
271

272 def plotneumann (state):
273 L = int(np.log(np.size(state))/np.log (2))
274 S = np.zeros(L -1)
275 for l in range (1, L//2+1):
276 S[l -1] = S[L-l -1] = vnentropy (state , l)
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277 return S
278

279 ##### Renyi entropies #####
280

281 def rentropy (state , l, n):
282 # Compute the nth Renyi entropy
283 L = int(np.log(np.size(state))/np.log (2))
284 rho = red_dens_mat (state , l)
285 S = (1/(1 -n))*np.log(np.trace(np.linalg. matrix_power (rho ,n

)))
286 return S
287

288 def plotrenyi (state , n):
289 L = int(np.log(np.size(state))/np.log (2))
290 S = np.zeros(L -1)
291 for l in range (1, L//2+1):
292 S[l -1] = S[L-l -1] = rentropy (state , l, n)
293 return S
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