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Abstract

Since their introduction more than 50 years ago, multi-Higgs-Doublet Models (NHDM)
have become some of the most studied extensions of the Standard Model. In addition
to the original motivation of introducing additional sources of CP violation, NHDMs
appear often as the low energy limit of supersymmetric models and can describe a wide
range of new physics. While the 2HDM has, by far, received the most attention, models
with three or more doublets have interesting new features such as the existence of exotic
CP symmetries or the possibility to accommodate both natural flavour conservation and
spontaneous CP violation. Unfortunately, as the number of doublets is increased, the
complexity of the potential grows quickly, rendering the study of these models more dif-
ficult with many analytical techniques from the 2HDM becoming unusable. The analysis
of the scalar spectrum becomes, due to the larger size of the mass matrices, more difficult
and one often has to resort to numerical methods. What’s more, the basis freedom grows,
making it more and more challenging to establish structural properties of the potential.
Importantly, symmetries become harder to recognize in an arbitrary instance of a poten-
tial. In this thesis, we have developed techniques aimed at facilitating the analysis of CP
violation and custodial symmetry in NHDMs. In particular, we have shown that these
two symmetries are characterized by Lie algebraic and representation-theoretical relations
among the basis-covariant quantities which determine the potential. Implementing such
characterizations in practice poses interesting, and not often encountered, computational
Lie algebra problems for which we have developed concrete solutions.

The first part of this thesis consists of an introduction providing context and details
for the papers that follow. Chapter 1 gives a brief introduction to NHDMs and some
of their general properties. Chapter 2 describes how basis-covariant objects can be used
to establish symmetries of potentials by means of Lie algebra and representation theory.
Then chapter 3 gives a short introduction to the mathematical theory of Lie algebras and
their representations followed by concrete applications to the identification of unknown
algebras and representations. Lastly, a summary and possible ideas for future works are
given in chapter 4.

In the second part, the papers written during this PhD are included. Paper I connects
spontaneous CP violation with experimental reality through a phenomenological study
of a Z2 × Z2-symmetric 3HDM, the Weinberg model, where we investigated the effect
of essential theoretical and experimental constraints on the CP properties of the neutral
scalars.
In Paper II, we derive necessary and sufficient conditions for order-2 CP (CP2) symmetry



of the NHDM potential. Our characterization is based on identifying the defining repre-
sentation of so(N) among basis-covariant quantities from the potential. After deriving
this characterization, we provide practical, optimized algorithms for determining whether
or not a potential is CP2-invariant.
In paper III, we apply our representation-theoretical methods to the detection of canoni-
cal custodial symmetry in the NHDM potential. This symmetry is stronger than CP2 for
the potential, and this translates, in the language of Lie algebras, to the fact that only
certain Lie algebra bases of the defining representation so(N) correspond to canonical
custodial symmetry of the potential. Interestingly, we find that, compared to CP2, this
different signature makes it more difficult to devise a concrete algorithm for all N but, at
the same time, makes the procedure simpler for potentials with N = 3, 4 and 5 doublets.
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Part I

Analysis Techniques for
Symmetries of

Multi-Higgs-doublet Potentials





Chapter 1

Multi-Higgs doublet extensions
of the Standard Model

1.1 The Standard Model

Let us start with a quick review of the Standard Model which will allow us to set the
notation and show some of the limitations which motivate one to introduce additional
doublets.

The Standard model is a gauge theory whose symmetry group1

SU(3)C × SU(2)L × U(1)Y (1.1.1)

encodes the strong interaction with the color group SU(3)C and the electroweak in-
teraction with the weak isospin and hypercharge groups SU(2)L and U(1)Y . All the
known elementary particles are classified by their spin and their representation under
the gauge group as shown in Table 1.1. In what follows we will restrict ourselves to the
SU(2)L ×U(1)Y electroweak theory where the effect of additional Higgs fields is the most
important. The covariant derivative is given by [1]

Dµ = ∂µ − ig(I+W
+
µ + I−W

−
µ + I3W

3
µ)− ig′Y Bµ (1.1.2)

where I± = I1∓iI2√
2

and
{
I1, I2, I3

}
are generators for the weak isospin SU(2)L and Y is

the hypercharge operator. Introducing the photon field Aµ and the Z-boson Zµ which
result from the mixing of Bµ and W 3

µ

Aµ = W 3
µ cos θW −Bµ sin θW (1.1.3)

Zµ = Bµ cos θW +W 3
µ sin θW (1.1.4)

where θW is the electroweak mixing angle which is related to the weak isospin and hy-

percharge couplings by tan θW = g′

g , one gets the expression

Dµ = ∂µ + ieQAµ − i
e

cos θW sin θW
(I3 +Q sin2 θW )Zµ − ig(I+W

+
µ + I−W

−
µ ) (1.1.5)

1The subscripts are conventional and act simply as reminders of which quantum numbers each factor
group corresponds to.
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Field Spin SU(3)C × SU(2)L × U(1)Y
Gµ 1 (8,1, 0)

Wµ 1 (1,3, 0)

Bµ 1 (1,1, 0)

ℓL
1
2 (1,2,−1)

QL
1
2 (3,2, 1

3 )

eR
1
2 (1,1,−2)

uR
1
2 (3,1, 4

3 )

dR
1
2 (3,1,− 2

3 )

ϕ 0 (1,2, 1)

Table 1.1: The fields of the Standard Model with their spin and gauge group representa-
tion.

with the electric charge Q given in terms of the weak isospin and hypercharge by

Q = I3 +
Y

2
. (1.1.6)

The Lagrangian of the Standard model can be written very concisely

LSM = Lkin + LYuk + V (ϕ) (1.1.7)

where Lkin contains the gauge kinetic terms for all the fields, LYuk contains the fermion-
scalar-fermion interactions

LYuk = Q̄LY
uϕ̃uR + Q̄LY

dϕdR + ℓ̄LY
ℓϕeR + h.c. (1.1.8)

and V (ϕ) is the Higgs potential

V (ϕ) = λ(ϕ†ϕ)2 − µ2ϕ†ϕ. (1.1.9)

Since gauge symmetry forbids mass terms for the gauge bosons and fermions, it must
somehow be broken for the theory to be in agreement with the crucial experimental
observation that most elementary particles are massive. The Higgs mechanism [2, 3] does
precisely that and leverages spontaneous electroweak symmetry breaking by a scalar field
to accommodate weak gauge boson and fermion masses. Indeed, the Higgs mechanism
generates the tree-level gauge boson masses in terms of the vacuum expectation value v
of the electrically neutral component of the Higgs field ϕ

mW =
v

2
g , mZ =

v

2

√
g2 + g′2 (1.1.10)

as well as fermion mass matrices

Mu =
v√
2
Y u , Md =

v√
2
Y d , M ℓ =

v√
2
Y ℓ. (1.1.11)
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CHAPTER 1. MULTI-HIGGS DOUBLET EXTENSIONS OF THE STANDARD MODEL

Diagonalizing these matrices by bi-unitary transformations V f
L/R and writing (1.1.8) in

terms of fermion mass eigenstates, one finds that the strength of the charged interaction
between quarks is controlled by a matrix

VCKM ≡ V u
L V d†

L (1.1.12)

called the CKM matrix. This matrix contains a single physical complex phase which
constitutes the only source of CP violation2 in the SM (see section 1.2.4 for more on CP
violation).

Almost 50 years after Brout, Englert and Higgs’ pioneering work, the discovery in
2012 of a scalar particle with the properties of a Higgs boson [5, 6] was an experimental
tour de force and a spectacular success of theoretical research. This discovery was the
final validation of the Standard Model which gives a remarkably good description of all
experimental observations to date.

However, from a theoretical point of view, the Standard Model is not completely satis-
factory and has several shortcomings. One of the biggest problems comes from cosmology
where the amount of CP violation in the Standard model is too small to explain the
observed matter-antimatter asymmetry in the Universe [7, 8]. Since there is only one
CP -violating number, the phase of the CKM matrix, new physics is necessary to intro-
duce CP violation. Accommodating new sources of CP violation is one of the motivations
for Multi-Higgs-doublet extensions of the SM, which we study in this thesis.

1.2 Generalities of Multi-Higgs doublet models

This is one of the simplest classes of extensions of the Standard Model, where it is extended
to includeN Higgs doublets, that is, fields which transform according to the representation
2 of SU(2)L and have hyperchage Y = 1

ϕa =

(
φ+
a

φ0
a

)
, a = 1, . . . , N. (1.2.1)

It is easy to check the electric charge of the component fields φ+
a and φ0

a which is given
in terms of the weak isospin and hypercharge by (1.1.6). Because all the doublets have
identical quantum numbers, there is no way to physically distinguish models which differ
by a change of basis for the fields ϕa, i.e.

ϕa → ϕ′
a = Uabϕb , U ∈ U(N). (1.2.2)

Such a basis transformation will not affect any measurable physics but will in general
transform the parameters of the model and is therefore not a symmetry but rather a
reparametrization invariance. Actually, to be precise, basis transformations which differ
by a constant rephasing e−iα

1, that is, a hypercharge transformation, are to be identified.
Therefore the reparametrization group is really PSU(N) ≃ U(N)/U(1). This invariance,

2In principle, the QCD Lagrangian can accommodate CP violation with the Θ-term, however electric
dipole moment measurements put extremely small upper bounds on Θ [4].
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which we will refer to as basis freedom, significantly complicates the analysis of symmetries
of NHDMs and overcoming this difficulty is the main topic of this thesis. For convenience,
we will consider SU(N) as the reparametrization group. Doing so gives no more or no
less basis freedom since PSU(N) ≃ SU(N)/ZN , i.e. the two groups are the same modulo
a hypercharge transformation of ZN ⊂ U(1).

A very important structural feature of NHDMs, which makes them attractive phe-
nomenological extensions, is that they preserve the tree-level value for the ρ parameter

ρ =
M2

W

M2
Z cos2 θW

= 1 (1.2.3)

which is experimentally very well-established [9]. This can be shown by direct computa-
tion of ρ at tree-level in a model with N Higgs fields ϕa with arbitrary weak isospin Ia,
using the covariant derivative (1.1.5) and assuming an electrically neutral vacuum. One
finds the general expression

ρ =

∑N
a=1

[
Ia(Ia + 1)− I23a

]
|va|2

2
∑N

a=1 I
2
3a|va|2

(1.2.4)

where I3a and va are the weak isospin projection and vacuum expectation value of the
electrically neutral component of ϕa. Thus the tree-level value of ρ depends only on the
vacuum and the weak isospin of the Higgs fields responsible for spontaneous symmetry
breaking, and it is exactly 1 for any number of SU(2) doublets (I = I3 = 1

2 ). We note in
passing that adding any number of singlet fields (I = I3 = 0) to a NHDM still naturally
ensures ρ = 1 at tree-level. Such models with singlets, which we do not consider in this
thesis, have received attention due to, e.g., their ability to accommodate dark matter
candidates [10, 11, 12].

1.2.1 The potential

The most general SU(2)L ×U(1)Y invariant scalar potential for N Higgs doublets can be
written

V = Zabcd(ϕ
†
aϕb)(ϕ

†
cϕd) + Yab(ϕ

†
aϕb), (1.2.5)

an intuitive and transparent expression which is useful when computing scattering am-
plitudes or imposing symmetries. Because of the hermiticity of the potential, the tensor
couplings Y and Z have the symmetries

Yab = Y ∗
ba (1.2.6)

Zabcd = Z∗
bacd = Z∗

abdc (1.2.7)

Zabcd = Zcdab. (1.2.8)

Taking into account these symmetries, one finds that Y and Z have, respectively, N2 and
1
2N

2(N2 + 1) independent real parameters, giving a total number of real parameters of

1

2
N2(N2 + 3) (1.2.9)

6



CHAPTER 1. MULTI-HIGGS DOUBLET EXTENSIONS OF THE STANDARD MODEL

for the potential of the NHDM. As can be seen, this number, and thus the complexity of
the potential, grows quickly with the number of doublets.

The main downside of the form of the potential (1.2.5) is that the couplings are
cartesian tensors with Y transforming according to the product representation

N̄×N (1.2.10)

and Z, due to the symmetry (1.2.8), according to the symmetric product representation

[
(N̄×N)× (N̄×N)

]
S

(1.2.11)

under a SU(N) change of basis U . Explicitly, we have

Zabcd → U†
aa′Ubb′U

†
cc′Udd′Za′b′c′d′ (1.2.12)

Yab → U†
aa′Ubb′Ya′b′ . (1.2.13)

These rather complicated transformation properties under a change of basis make this
form of the potential impractical for studying basis-invariant properties of the potential
such as the presence of symmetries.

Alternatively, the NHDM potential may be written in the so-called bilinear form,

V = M0K0 +MiKi + LiK0Ki + Λ0K
2
0 + ΛijKiKj , (1.2.14)

where

K0 =

√
2

N
ϕ†
aϕa (1.2.15)

Ki = ϕ†
a(λi)abϕb , i = 1, . . . , N2 − 1, (1.2.16)

which was first introduced for the 2HDM in [13] to simplify the analysis of vacua. For
reference, the components of the generalized Gell-Mann matrices λi, ordered as in [14]
with the antisymmetric matrices first, are given by

(λl(p,q))mn = −i(δpmδqn − δqmδpn) , m < n < k (1.2.17)

(λk+l(p,q))mn = δpmδqn + δqmδpn , m < n < k (1.2.18)

(λ2k+s)pq =

√
2

s(s+ 1)





+1 , p = q ≤ s

−s , p = q = s+ 1

0 , otherwise

, s = 1, . . . , N − 1 (1.2.19)

where k ≡ N(N−1)
2 and l(m,n) is the lexicographic ordering function

l(1, 2) = 1, l(1, 3) = 2, . . . , l(N − 1, N) = k (1.2.20)

and we define the usual structure constants fijk of su(N) in this basis by

[λi, λj ] ≡ 2ifijkλk. (1.2.21)

7



One can write the bilinears explicitly in terms of products

Kl(p,q) = 2Im(ϕ†
pϕq) , m < n < k (1.2.22)

Kk+l(p,q) = 2Re(ϕ†
pϕq) , m < n < k (1.2.23)

K2k+s =

√
2

s(s+ 1)

( s∑

r=1

ϕ†
rϕr − sϕ†

sϕs

)
, s = 1, . . . , N − 1. (1.2.24)

The point is that the products ϕ†
aϕb transform according to the representation N̄×N

while the bilinears (1.2.15) and (1.2.16) transform under the singlet and the adjoint rep-
resentation of SU(N), respectively, i.e. under a change of basis U ∈ SU(N)

K0 → K0 (1.2.25)

Ki → Ad(U)ijKj (1.2.26)

with Ad(U) the adjoint representation of the SU(N) basis transformation

Ad(U)ij = tr(U†λiUλj). (1.2.27)

As a result, in the bilinear form, the couplings have simpler transformation laws, namely

M0 → M0 (1.2.28)

Λ0 → Λ0 (1.2.29)

L → Ad(U)L (1.2.30)

M → Ad(U)M (1.2.31)

Λ → Ad(U)ΛAd(U)T . (1.2.32)

The matrices in the adjoint representation are orthogonal so that one has

Ad(SU(N)) ⊆ SO(N2 − 1) (1.2.33)

with strict inclusion for N > 2 and equality for N = 2. The latter fact means that, in
the 2HDM, Λ, being a 3 × 3 symmetric matrix, can always be diagonalized by a change
of doublet basis U ∈ SU(2). Because of this property, the analysis of the 2HDM is often
a lot more straightforward than that of models with N ≥ 3 doublets.

Effectively, the bilinear form of the couplings decomposes N̄×N into irreducible rep-
resentations (irreps) as

N̄×N = 1+Ad, (1.2.34)

corresponding to the decomposition of the cartesian tensor Y into the irreducible tensors
M0 andM . On the other hand, the bilinear couplings only achieve a partial decomposition
of the symmetric product

[
(N̄×N)× (N̄×N)

]
S
= 1+Ad+ (Ad×Ad)S . (1.2.35)

corresponding to the decomposition of the cartesian tensor Z into the irreducible tensors
Λ0 and L, and the symmetric tensor Λ. One could, in principle, go further and also

8



CHAPTER 1. MULTI-HIGGS DOUBLET EXTENSIONS OF THE STANDARD MODEL

decompose Λ into irreducible tensors. However, this would not necessarily simplify the
analysis of the potential since the procedure depends on N and high-dimensional irreps
arise.

A straightforward way to transform a potential given in the cartesian form (1.2.5) to
the bilinear form (1.2.14) is as follows. First, invert the relations (1.2.15) and (1.2.16) to
get

ϕ†
aϕb = Xµ

abKµ, (1.2.36)

where the N ×N ×N2 tensor X is given in terms of the generalized Gell-Mann matrices
by a tuple of matrices

X =

(√
2

N
1, λ1, . . . , λN2−1

)
. (1.2.37)

Then, writing the products ϕ†
aϕb in terms of the bilinears Kµ in (1.2.5), one finds the

relations

M0 = trX0Y ∗ (1.2.38)

Λ0 = ZabcdX
0
abX

0
cd (1.2.39)

Mi = trXiY ∗ (1.2.40)

Li = ZabcdX
i
abX

0
cd (1.2.41)

Λij = ZabcdX
i
abX

j
cd (1.2.42)

which relate the bilinear couplings and the cartesian couplings.

1.2.2 The scalar spectrum

The N -Higgs-doublet models has 4N scalar degrees of freedom, three of which are Gold-
stone bosons that become the longitudinal components of the W and Z gauge bosons
after electroweak symmetry breaking. Out of the remaining 4N − 3 degrees of freedom,
2N − 2 are charged scalars and 2N − 1 are real scalars. Let us parametrize the doublets
after spontaneous symmetry breaking as

(
φ+
a

1√
2
(va + ηa + iχa),

)
(1.2.43)

where the Vacuum Expectation Values (VEV) va may be complex and must satisfy∑ |va|2 ≡ v2 = (246GeV)2 in order for the model to reproduce the observed gauge
boson masses. A Higgs basis is a basis where, by definition, the first doublet has VEV v,
which is accomplished by a change of basis U such that U1ava = v, implying

U1a =
v∗a
v
, (1.2.44)

and so a Higgs basis transformation is only determined up to a U(N − 1) mixing of the
remaining doublets. In such a basis, the Goldstone bosons must be in the first doublet
since the other doublets have no VEVs, and hence do not play a role in electroweak

9



symmetry breaking, thus one finds the general expressions for the Goldstone bosons in
an arbitrary basis

G+ =
v∗a
v
φ+
a (1.2.45)

G0 =
v∗a
v
χa. (1.2.46)

The neutral and charged mass eigenstates (including the Goldstone bosons), hp (p =
1, . . . , 2N) and h+

a (a = 1, . . . , N), are found by diagonalizing the mass matrices

(
M2

0

)
pq

=
∂2V

∂φp∂φq
, p, q = 1, . . . , 2N (1.2.47)

(
M2

ch

)
ab

=
∂2V

∂φ+
a ∂φ

−
a
, a, b = 1, . . . , N, (1.2.48)

where we have let φ = (η1, . . . , ηN , χ1, . . . , χN ), by a O(2N) and a U(N) matrix, respec-
tively, and are thus given by the expressions

hp = Opqφq , O ∈ O(2N) (1.2.49)

h+
a = Uabφ

+
b , U ∈ U(N) (1.2.50)

with h2N ≡ G0 and h+
N ≡ G+.

Alignment limit

Since the discovery of the Higgs boson, some of its properties have been measured very
precisely at the LHC [15, 16]. First, the mass has been measured to an impressive accuracy
of about 0.1% to be mh = 124.94GeV [17, 18]. The couplings to other known particles
have also been determined experimentally [15, 16] and they are very close to the ones of
the Standard Model Higgs boson. This is an essential experimental fact which must be
replicated by any NHDM in order to be a viable candidate model, a property known as
alignment [19, 20]. In particular, the hV V (V = W,Z) coupling modifier relative to the
Standard Model κV has been estimated [9], assuming κW = κZ ≡ κV ,

κV = 1.05± 0.04, (1.2.51)

and is in excellent agreement with the Standard Model. Let us compute this coupling
modifier in an NHDM in order to find a necessary condition for alignment. Proceed in a
Higgs basis, where one of the doublets, call it H, has the full VEV v = 246GeV meaning
that

H =

(
G+

1√
2
(v + η + iG0)

)
. (1.2.52)

Then, in general, η = cphp is a normalized linear combination of the mass eigenstates,
and one finds the hV V gauge interactions

(DµH)†(DµH) ⊃
(
gmWW+

µ W−µ +
gmZ

2 cos θW
ZµZ

µ
)
cphp (1.2.53)

10



CHAPTER 1. MULTI-HIGGS DOUBLET EXTENSIONS OF THE STANDARD MODEL

and it is seen that cp is the coupling modifier for the hV V interactions. Now, in order
to be consistent with the observation (1.2.51), one of the mass eigenstates, say h1, must
have |c1| very close to 1. Because of normalization, or to be more precise, orthogonality
of the matrix which diagonalizes the neutral mass matrix in the Higgs basis, this implies
that |cq| ≪ 1 for q ≥ 2. Thus alignment implies that η must be very close to a mass
eigenstate with mass m = mh.

1.2.3 Yukawa interactions

With multiple doublets, the up quarks, down quarks and leptons can in principle couple
to a single, several or even all doublets. Let us first consider the most general case where
the fermions couple to all doublets

LYuk =

N∑

a=1

Q̄LY
u
a ϕ̃auR + Q̄LY

d
a ϕadR + ℓ̄LY

ℓ
aϕaeR + h.c. (1.2.54)

with possibly different Yukawa couplings matrices for each doublet. Thus the fermion
mass matrices take the form

Mu =

N∑

a=1

va√
2
Y u
a , Md =

N∑

a=1

va√
2
Y d
a , M ℓ =

N∑

a=1

va√
2
Y ℓ
a . (1.2.55)

and, in contrast to the Standard Model, a bi-unitary transformation on the quarks is
not guaranteed to diagonalize each Yukawa coupling matrix Y q

a individually. Therefore,
writing the neutral interactions

L0
Yuk =

1√
2

N∑

a=1

ūLY
u
a (ηa−iχa)uR+ d̄LY

d
a (ηa+iχa)dR+ ēLY

ℓ
a (ηa+iχa)eR+h.c. (1.2.56)

in the basis of fermion and scalar mass eigenstates may reveal Flavour Changing Neutral
Currents (FCNC). Such interactions between quarks are known experimentally to be very
suppressed and so their presence destroys the model. A common way to alleviate this
problem is to have each fermion species couple to a single Higgs doublet so that diag-
onalizing the mass matrices also diagonalizes the Yukawa couplings. This can be done
by imposing a symmetry [21] on the theory and is known as natural flavour conserva-
tion (NFC). So-called BGL models also achieve this by relating the off-diagonal neutral
couplings to small elements of the CKM matrix by means of a symmetry [22].

1.2.4 CP violation

In general, CP violation occurs when there are irremovable complex phases in the physical
couplings of a theory. When this happens, the S-matrix will depend on these phases and
asymmetries between some scattering processes and their corresponding CP -conjugated
processes will be observed [23]. In the Standard Model, the phase of the CKM matrix
can, for example, be determined experimentally from the CP asymmetries observed in D
meson decays [24].

11



Multi-Higgs doublet models provide, in addition to the CKM mechanism, two new
ways to violate CP , namely, via scalar self-interactions and via Yukawa interactions.
Typically, when CP is broken explicitly in the potential or spontaneously by the vacuum,
both scalar and Yukawa interactions will mediate CP violation. Explicit CP violation
occurs when none of the CP symmetries of the gauge Lagrangian can be extended to the
potential [23]. It is important to note that, even in the absence of a basis where all the
coefficients of the potential are real there are still alternative classes of CP symmetries [25,
26] of the gauge sector, which, for N ≥ 3, may be extended to the potential. Therefore, in
NHDMs, the absence of a real basis for the potential is only a necessary condition for CP
violation. On the other hand, CP is spontaneously broken when it is possible to define
CP transformations which preserve the whole Lagrangian but all of these are broken by
the vacuum.

It is interesting to observe how scalar sector CP violation manifests in the Yukawa
sector. Rewriting the neutral Yukawa interactions (1.2.56) using chiral projection opera-

tors PL/R = 1±γ5

2 and substituting the fermion and scalar mass eigenstates (1.2.49), one
finds terms of the form

Lhpf̄f =
mf

v
hp(κ

hpff f̄f + iκ̃hpff f̄γ5f). (1.2.57)

Now, since the fermion bilinears f̄f and f̄γ5f are even and odd under CP , respectively,
if both κhpff and κ̃hpff are non-zero then this interaction mediates CP violation, since
no assignment of CP parity for hp can make (1.2.57) CP -invariant. Assuming NFC with
fermions u, d, ℓ coupling to doublets a, b, c, respectively, the κ coefficients are given by

κhpuu =
v

va
O†

ap , κ̃hpuu =
−v

va
O†

a+N,p (1.2.58)

κhpdd =
v

vb
O†

bp , κ̃hpdd =
v

vb
O†

b+N,p (1.2.59)

κhpℓℓ =
v

vc
O†

cp , κ̃hpℓℓ =
v

vc
O†

c+N,p. (1.2.60)

with no sum over the repeated indices. Thus, CP violation occurs when, for the active
doublets ϕa, the real and imaginary part of the neutral fields, ηa and χa, mix to give
the mass eigenstates. In the spontaneously CP -violating 3HDM studied in paper I, the
phases of the VEVs cause such a mixing in general, and one observes scalar-mediated CP
violation in the Yukawa sector.
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Chapter 2

Symmetries characterized by
representation-theoretical

relations

When building multi-Higgs-doublet models, one faces several challenges. First, the new
physics introduced via the additional scalar particles may clash with experimental ob-
servations. Moreover, the increase of the number of free parameters makes the complete
exploration of a NHDM intractable and also reduces its predictive power. Imposing sym-
metries, be them discrete or continuous1, on the Higgs sector can mitigate these problems
by simultaneously enforcing important experimental constraints in a structural way, as
opposed to fine-tuning numerical values of the parameters, and reducing the number of
free parameters. An example is NFC [21] discussed in the previous chapter where a
symmetry forces each fermion species to couple to a single Higgs doublet, thus removing
flavour-changing neutral currents.

As is well-known, due to basis-freedom, the symmetry of a potential may be manifest
in some bases yet completely obfuscated in others. When imposing a symmetry, one
naturally chooses the simplest form for the group elements or generators in the case of a
continuous symmetry. However, a change of basis will in general complicate the form of
the symmetry transformations so that the symmetry is not apparent anymore.

In some circumstances, such as parameter space scans, one may come across a potential
in an arbitrary basis with no prior knowledge about its possible symmetries. In order to
be able to identify symmetries it is then necessary to know signatures of these symmetries
which are verifiable in any basis. A natural way to proceed is to look for such signatures
in basis-invariant quantities which may, for example, take special values when a symmetry
is present. This approach, with CP -odd basis invariants, has been employed to detect
CP violation in the 2HDM and 3HDM [27], and later to derive necessary and sufficient
conditions for order-2 CP (CP2) invariance in the 2HDM [28]. The latter result, originally
derived by exhaustion, was rederived subsequently by more elegant means [29, 30]. When
attempting to generalize such necessary and sufficient conditions to N ≥ 3 doublets, the

1Of course, global continuous symmetries, when spontaneously broken, give rise to Goldstone bosons
which are in general undesirable.
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difficulty is finding a complete set of CP -odd invariants whose vanishing would imply the
vanishing of all possible CP -odd invariants. In an attempt to overcome this problem, an
interesting but computationally expensive algorithm for the systematic construction of
complete sets of invariants was proposed in [31].

On the other hand, basis-covariant quantities may also exhibit basis-invariant prop-
erties in the presence of a symmetry. This observation has been exploited to identify,
often in conjunction with some basis-invariants, CP symmetry [29, 32, 33], custodial
symmetry [34] and Higgs family symmetries [35] of the 2HDM and 3HDM potentials.
Thus using covariant objects allows one to circumvent some of the difficulties related to
a purely invariants-based approach. Papers II and III are set within this framework and
introduce conditions for CP2 invariance and canonical custodial symmetry for potentials
with three or more doublets.

In this chapter, we first introduce the space where the basis-covariant objects lie,
which we refer to as the adjoint space, highlighting the Lie algebra structure which plays
a central role in our work. Then we show how the existence of doublet bases where
the bilinear quadratic form Λ takes a block-diagonal is encoded in its eigenvectors. Fi-
nally we take a closer look at the manifestly CP2-invariant and custodially symmetric
NHDM potentials, and discuss why these symmetries are particularly well-suited for a
representation-theoretical characterization.

2.1 Structure of the adjoint space

As presented in section 1.2.1, the basis-covariant quantities which determine the NHDM
potential in its bilinear form (1.2.14), namely,

Λ, L,M (2.1.1)

transform in terms of the adjoint representation under a SU(N) change of basis. Moreover,
the real symmetric Λ is completely determined by its eigenvectors vi and eigenvalues αi

Λ = αiv
T
i vi (2.1.2)

and thus is determined by N2−1 adjoint vectors, the eigenvectors, as well as N2−1 basis-
invariants, i.e. the eigenvalues. Therefore all the basis-covariant objects which characterize
the potential are adjoint vectors and it is natural to think of these as elements of su(N)
since it is the space on which the adjoint representation acts. Formally, this can be
understood as a Lie algebra isomorphism between RN2−1 and su(N)

Ω : RN2−1 → su(N)

a 7→ A ≡ aiλi (2.1.3)

with the Lie bracket on RN2−1, defined in [33] and referred to as F -product, being given
by

F : RN2−1 × RN2−1 → RN2−1

(a, b) 7→ fijkaibj ≡ F
(a,b)
k . (2.1.4)
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This is indeed a Lie algebra isomorphism since

[A,B] = iC = 2ifijkaibjλk ⇐⇒ 2F (a,b) = c (2.1.5)

where the conventional factor 2 simply follows from the definition of the structure con-
stants in the Gell-Mann basis. One could absorb this numerical factor into the definition
of the F -product or, equivalently, use the rescaled su(N) Gell-Mann basis { 1

2λi}N
2−1

i=1 .
Thanks to this isomorphism, it is possible to relate the presence of a symmetry to Lie

algebraic and representation-theoretical properties of eigenvectors. As we will see, this
important observation of the Lie algebra structure of the adjoint space is the starting
point for paper II and III which deal with CP2 and canonical custodial symmetry.

2.2 Block-diagonal structures

Many symmetries are characterized by the existence of doublet basis in which Λ takes a
block-diagonal form and therefore

Λij = ei · Λej = 0 , ∀i ∈ I, ∀j ∈ J (2.2.1)

for two subsets of indices I and J partitioning {1, . . . , N2 − 1} and where {ei}N
2−1

i=1

is an orthonormal basis for the adjoint space. Equation (2.2.1) implies that |J | of Λ’s
eigenvectors, which we can denote without loss of generality by {tj}j∈J span the subspace
generated by {ej}j∈J . This is a basis-invariant property, which, if it can be established,
shows that Λ can be transformed into the particular block-diagonal form (2.2.1) by a
change of basis U ∈ U(N). It is straightforward to generalize this idea to Λ structures
with more than two blocks. Techniques for detecting such coincidence between certain
subspaces and eigenspaces of Λ were developed in [33] and used to characterize all the
realizable symmetries of the 3HDM.

Now, if, for a particular symmetry, the block-diagonal structure of Λ is such that
the relevant subspace in the adjoint space is actually a subalgebra of su(N), then one
can make use of Lie algebra and representation theory to establish the coincidence of
eigenspaces and subalgebras. Thus the detection of such a symmetry is facilitated by the
additional Lie algebra structure of the subspace characterizing it. We will illustrate this
situation for CP2 and canonical custodial symmetry in the next sections.

2.3 CP2

In a NHDM, due to the basis freedom, any transformation consisting of complex conjuga-
tion followed by a unitary mixing of the doublets can define a CP symmetry [36]. That is,
an NHDM potential is CP -conserving if it is invariant under at least one transformation
of the form

(CP )ϕi (CP )† = Xijϕ
∗
j (2.3.1)

with X ∈ U(N). It should be noted that CP need not be its own inverse, with CP 2 = I,
and a transformation such that CP r = I, where r = 2q is an even integer, also defines
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a valid CP transformation. The integer r is called the order of the CP transformation.
Equivalently, an order-r CP transformation (CPr) means that

(XX∗)q = I. (2.3.2)

CP2 symmetry is known to be equivalent to the existence of a basis where the cartesian
couplings of the potential are real [28]

Yab = Y ∗
ab (2.3.3)

Zabcd = Z∗
abcd (2.3.4)

whereas potentials with only higher-order CP symmetries feature irremovable complex
coefficients[25, 26]. With a CP2 symmetry, the reality of the potential implies the exis-
tence of a basis with vanishing coefficients for the bilinear terms

Ki , i ≤ k ≡ N(N − 1)

2
(2.3.5)

KiKj , i ≤ k < j (2.3.6)

which, in terms of doublets, are given in terms of imaginary parts of products (cf. sec-
tion 1.2.1)

Im(ϕ†
aϕb) , a ̸= b (2.3.7)

Re(ϕ†
aϕb)Im(ϕ†

cϕd) , c ̸= d. (2.3.8)

Thus, in such a real basis, the bilinear quadratic form Λ takes a block diagonal form

Λ =

(
A 0
0 B

)
(2.3.9)

where A and B are symmetric matrices of size k×k andN2−1−k×N2−1−k, respectively.
This can be seen by inspecting the bilinears (1.2.16). As a result, as explained in the
previous section, k of Λ’s eigenvectors {ta}ka=1 span

Span(e1, . . . , ek) (2.3.10)

which, in su(N), corresponds to Span(λ1, . . . , λk) and is the defining representation of
so(N). On the other hand, CP2 implies for the vectors L and M that

L · ta = M · ta = 0 , ∀a = 1, . . . , k, (2.3.11)

a property which we refer to as LM -orthogonality.
Therefore, establishing CP2 invariance for an arbitrary potential can be done, as in

paper II, by determining whether or not there exists a set LM -orthogonal eigenvectors of
Λ which generates the defining representation of so(N). A more detailed treatment and
a complete proof of this statement along with practical algorithms can be found in paper
II.
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2.4 Canonical custodial symmetry

The potential for a single Higgs doublet is very constrained by gauge invariance and
renormalizability, with only two allowed terms

V = −µ2(ϕ†ϕ) + λ(ϕ†ϕ)2 (2.4.1)

and actually exhibits an accidental SU(2)L × SU(2)R ≃ SO(4)C symmetry. The term
accidental refers to the fact that the actual symmetry of the potential is larger than the
imposed SU(2)L × U(1)Y . To see this larger symmetry, one lets

Φ =
(
ϕ iσ2ϕ

∗) =
(
φ+ −φ0∗

φ0 φ−

)
(2.4.2)

in terms of which the potential may be written, using 1
2 tr(Φ

†Φ) = ϕ†ϕ,

V =
µ2

2
tr(Φ†Φ) +

λ

4
tr(Φ†Φ)2 (2.4.3)

and it becomes apparent, from the cyclicity of the trace, that the transformation

Φ → ULΦU
†
R, (2.4.4)

where UL and UR are two independent SU(2) matrices, leaves the potential invariant. This
accidental SU(2)L × SU(2)R symmetry was first reported in [37] where it was shown that
it protects the ρ parameter (1.2.3) from large corrections coming from the scalar sector,
hence it is known as custodial symmetry. Indeed, after spontaneous symmetry breaking,
ρ is protected by a residual SO(3)C symmetry under which (W+,W−, Z) transforms
as a triplet, guaranteeing MW = MZ , or equivalently, cos θW = 1 and therefore also
ρ = 1. Custodial symmetry is not, however, an exact symmetry of full Standard Model
Lagrangian, as it is broken by the gauge and Yukawa interactions. Thus ρ still receives
small radiative corrections proportional to gauge couplings and quark masses.

Naturally, custodial symmetry is a structural feature which one would like to preserve
when extending the scalar sector with additional doublets. However, with extra doublets,
the complexity of the potential increases immediately and SO(4)C is not an accidental
symmetry anymore. Thus, in an NHDM, custodial symmetry has to be imposed which
also means that, given an arbitrary potential, it is not trivial to establish whether or not it
respects custodial symmetry. Moreover, several implementations become possible [38, 39],
based on how SU(2)R acts on

Φij ≡
(
ϕi iσ2ϕ

∗
j

)
=

(
φ+
i −φ0∗

j

φ0
i φ−

j

)
. (2.4.5)

In addition there are more electroweak symmetry breaking patterns and not all of them
will preserve SO(3)C .

We will focus on the canonical custodial symmetry investigated in [34] where the
SU(2)R transformation is given by

Φii → ΦiiU
†
R , i = 1, . . . , N (no sum). (2.4.6)
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In [34] it was shown that a potential enjoying such a custodial symmetry can always be
transformed in basis where the bilinear quadratic form Λ takes the form

ΛN =

(
CN 0
0 B

)
, (2.4.7)

where CN is specific symmetric k × k matrix, which we refer to as the custodial block,
whose structure depends on the number of doublets N , and B is an arbitrary symmetric
N2−1−k×N2−1−k matrix. Note first that this is the same block-diagonal structure as
for CP2. However, custodial symmetry is stronger since the upper block is not arbitrary
as for CP2. For N = 3, the custodial block is the zero matrix, however, for N > 3 there
are terms that contribute to the custodial block which are of the form [34]

I
(4)
abcd = Im(ϕ†

aϕb)Im(ϕ†
cϕd) + Im(ϕ†

aϕd)Im(ϕ†
bϕc) + Im(ϕ†

aϕc)Im(ϕ†
dϕb), (2.4.8)

and we show in paper III that it follows that the custodial block for N > 3 is given in
general by

CN =

N∑

a<b<c<d

λabcdD
(abcd)
N (2.4.9)

where λabcd are coupling parameters, D
(abcd)
N is a k × k matrix which is zero everywhere

except in the 6× 6 sub-block consisting of row and column numbers
(
l(a, b), l(a, c), l(a, d), l(b, c), l(b, d), l(c, d)

)
(2.4.10)

with l(a, b) the lexicographic ordering function (1.2.20). The 6× 6 non-zero sub-block of

D
(abcd)
N has the anti-diagonal form




0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0




. (2.4.11)

Thus, canonical custodial symmetry is stronger than CP2 since, in addition to the
block diagonal structure (2.3.9), it requires the upper block to take the particular form (2.4.9).
Whereas CP2 is characterized by the LM -orthogonal eigenvectors of Λ spanning the defin-
ing representation of so(N), we will now show that canonical custodial symmetry implies
in addition an eigenvalue pattern and F -product relations for these eigenvectors.

Consider the spectral decomposition of the manifestly custodial block (2.4.9)

CN =

k∑

a=1

βatat
T
a . (2.4.12)

where the eigenvalues βa and eigenvectors {ta}ka=1 giving the characteristic custodially
symmetric structure are in general functions of the parameters λabcd of which there are
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(
N
4

)
. By studying these eigenvalues and eigenvectors, one can deduce signatures of cus-

todial symmetry verifiable in any basis. First, the eigenvalues may exhibit a certain
pattern, e.g. degeneracies or functional dependence on parameters, while the eigenvectors
may satisfy particular so(N) F -product relations. The challenge, which becomes harder
as N grows, is to identify all the eigenvalue combinations and F -product relations which
correspond to canonical custodial symmetry.

As an example, consider the case of N = 4 doublets, then the k = 6 eigenvectors of
C4, which we denote t±1 , t

±
2 , t

±
3 , are constant, have eigenvalues ±λ1234 and satisfy two sets

of so(3) F -products

√
2F (t±a ,t±b ) = ϵabctc (2.4.13)

F (t±a ,t∓b ) = 0. (2.4.14)

This shows that, for N = 4, the signature of canonical custodial symmetry is two sets of
opposite threefold degenerate eigenvalues with the corresponding eigenvectors satisfying
so(4) ≃ so(3) ⊕ so(3) F -products. It is essential that the F -products relations be the
ones in (2.4.13) and (2.4.14), because other so(4) F -products, such as the ones in the
Gell-Mann basis

F (ea,eb) = fabcec , a, b, c = 1, . . . , 6, (2.4.15)

where fabc are the structure constants defined by (1.2.21), would not correspond to canon-
ical custodial symmetry.

In the language of Lie algebras, this means that canonical custodial symmetry is
characterized by eigenvectors generating the defining representation of so(N) in specific
Lie algebra bases, in addition to having a correct eigenvalue pattern and being LM -
orthogonal.

In practice, as N grows, it quickly becomes difficult to identify the eigenvalue pattern
and F -product relations which characterize canonical custodial symmetry because the
number of parameters λabcd grows making patterns in the eigenvalues and eigenvectors
less and less apparent.

2.5 Sufficient conditions from equivalence of represen-
tations

Suppose one has found that a subset of eigenvectors {va} of Λ generates a representation
of a d-dimensional subalgebra g ⊂ su(N)

Va = (va)iλi , a = 1, . . . , d. (2.5.1)

This is, for instance, what one attempts to do in order to establish CP2 invariance of the
potential using the defining representation of so(N). Then let

Sa ≡ (sa)iλi , a = 1, . . . , d (2.5.2)

generate a representation of g isomorphic to the V representation. Since the two repre-
sentations are isomorphic, they must be related by conjugation by an invertible matrix.
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In fact, since they are, in addition, hermitian representations, they are actually related
by an SU(N) matrix, as shown in paper III2, and we have

Va = USaU
†, (2.5.3)

which is equivalent to the vectors va and sa being related by an adjoint rotation

Ad(U)ij(va)j = (sa)i. (2.5.4)

Therefore, there exists a doublet basis where the eigenvectors va have components (sa)i.
If the components are such that

(sa)i = 0 , ∀a = 1, . . . , d , ∀i ∈ I (2.5.5)

where I is a subset of {1, . . . , N2 − 1} with |I| ≤ N2 − 1− d, then

Ad(U)ΛAd(U)T =

d∑

a=1

βaAd(U)tat
T
aAd(U)T + . . . (2.5.6)

=

d∑

a=1

βasas
T
a + . . . (2.5.7)

is block-diagonal.
Thus, one can prove the existence of a doublet basis where the symmetry is manifest if

one is able to show that a set of vectors generates a particular representation of a particular
Lie algebra. In the next chapter we’ll remind the reader of the relevant Lie algebra
and representation theory, and describe how to identify algebra and representations in
practice.

2This result only applies to representations which are irreducible or a sum of inequivalent reducible
representations.
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Chapter 3

Lie algebras and
representations

As we have seen in the previous chapter, some of the characteristic relations between basis-
covariant vectors for a given symmetry may be Lie algebraic or representation-theoretical
in nature. Indeed, the procedures for establishing CP2 invariance or custodial symmetry
developed in Papers II and III rely on the identification of the defining representation of
so(N) in su(N). To do so, it is essential to be able to identify semisimple Lie algebras and
representations in any of their possible forms, e.g. in an arbitrary Lie algebra basis. In
the first part of this chapter we give an overview of Lie algebra and representation theory
focusing on classification aspects. In the second part, we present concrete computations
and practical methods applicable to the problem of identifying symmetries. The material
of this chapter is based mostly on [40, 41, 42, 43] and is meant to be a digested intro-
duction to the beautiful world of Lie algebras providing an intuitive picture rather than
a mathematically exhaustive one. Readers interested in a more rigorous presentation are
encouraged to consult the aforementioned books.

3.1 Lie algebra and representation theory:
a pragmatic summary

3.1.1 Definitions

We start with some basic general definitions, setting in passing nomenclature and nota-
tion. A Lie algebra g is a vector space equipped with a bilinear operation

[· , ·] : g× g → g (3.1.1)

having the following properties:

◦ Skew-symmetry: [x, y] = −[y, x], ∀x, y ∈ g.

◦ Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ g.
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Such a bilinear form [· , ·] is sometimes called the Lie bracket or simply bracket. The
algebra g may be a vector space over K ≡ R or C, then referred to as a real or complex
Lie algebra, or any other algebraic field. In this thesis we will not consider any other
fields than K. Indeed, in physics, where Lie algebras usually describe infinitesimal con-
tinuous transformations parametrized by real numbers, e.g. angles, real Lie algebras are
the most relevant. However, the theory of real Lie algebras is more involved than its
complex counterpart mainly because R, in contrast to C, is not an algebraically closed
field. Thankfully, the theory of real Lie algebras inherits some important results from the
complex theory. Thus, as we will see, even when working with a real Lie algebra g, it
is often useful to consider the corresponding complex Lie algebra, known as complexified
algebra, gC ≡ g+ ig whose elements are

x+ iy , x, y ∈ g. (3.1.2)

A subalgebra t ⊂ g is, as the name suggests, a subspace of g such that

[a, b] ∈ t, ∀a, b ∈ t, (3.1.3)

i.e. a subspace closed under the Lie bracket. Closely related is the notion of ideal which
is an invariant subalgebra of g. That is, a subalgebra l such that

[x, a] ∈ l, ∀x ∈ g, a ∈ l. (3.1.4)

A Lie algebra g with no non-trivial ideals is called irreducible. Furthermore, if
dim(g) ≥ 2 then g is called simple. It is simply a matter of definition that irreducible and
simple Lie algebras only differ by the 1d Lie algebra whose real form, which one might
call u(1), exponentiates to U(1).

Now, given two Lie algebras g1 and g2, one can form the direct sum g1 ⊕ g2. This is
the Lie algebra whose elements are (x1, x2) with x1 ∈ g1, x2 ∈ g2 and whose Lie bracket
is given by

[(x1, x2), (y1, y2)] ≡ ([x1, y1], [x2, y2]). (3.1.5)

From now on we will restrict our attention to algebras which are either simple or a
direct sum of simple Lie algebras, collectively referred to as semisimple Lie algebras. All
the Lie algebras encountered in this work are of this type1. An important property of
semisimple Lie algebras, which follows from the definition, is that their center is trivial,
that is, 0 is the only element which commutes with every element.

Lie algebra bases and structure constants

As a vector space, a Lie algebra admits bases in which its elements can be expanded as

x = xiei (3.1.6)

where i runs from 1 to d, which is, by definition, the dimension of g and xi ∈ K. Now the
closure of g under the Lie bracket implies that basis elements satisfy

[ei, ej ] = cijkek (3.1.7)

1Ignoring trivial u(1) components
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where the expansion coefficients cijk ∈ K are usually called structure constants2 of the
algebra. It’s important to note that structure constants are basis-dependent and thus
do not by themselves characterize a Lie algebra. Indeed, under a change of basis M ∈
GL(d,K), the new basis elements e′i = Mijej satisfy instead

[e′i, e
′
j ] = MilMjm[el, em]

= MilMjmclmnen (3.1.8)

= MilMjmM−1
nk clmne

′
k

and the new structure constants

c′ijk = MilMjmM−1
nk clmn (3.1.9)

differ in general from cijk.

Representations

Lie algebras are abstract mathematical structures defined purely by their algebraic prop-
erties, and various sets of objects may assume a particular Lie algebra structure. This
is formally described by representations, homomorphisms between two Lie algebras. Lie
algebras are usually represented by complex matrices via a homomorphism

Π : g → Mn(C), (3.1.10)

where Mn(C) is the space of n× n matrices with coefficients in C. These representations
are the action of the Lie algebra on vectors of Rn or Cn. Representations on other Lie
algebras are seldom encountered in physics with the notable exception of the adjoint
representation

ad : g → gl(g), (3.1.11)

with gl(g) the Lie algebra of endomorphisms of g, which is the action of a Lie algebra on
itself. This representation stands out in that it is defined only in terms of the Lie algebra
g as opposed to other representations which involve the choice of a somewhat arbitrary
vector space. Explicity, the adjoint representation is given by

ad(x)y ≡ adxy = [x, y] (3.1.12)

and, picking a basis {ei}di=1 for g, we have

adxy = xicijkyjek. (3.1.13)

Thus the adjoint representation maps an element x of the algebra to a d× d matrix with
real coefficients

(adx)ij = xkckji. (3.1.14)

2In this chapter, we use mathematicians’ Lie algebra bases, i.e. without the factor i often found in
physics literature.
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From this expression it is also clear that the adjoint representation only references to the
Lie algebra itself since it is given in terms of the structure constants.

Two representations Π1 and Π2 of g acting on the same vector space Kn are isomorphic
if and only if there is an invertible matrix M ∈ GL(n,K) such that

Π1(ei) = M−1Π2(ei)M , ∀i = 1, . . . , d, (3.1.15)

i.e. the matrix representations of basis elements are equivalent by M . This a special case
of the general definition of an isomorphism between two arbitrary representations based
on intertwining maps [43].

A representation Π of a real Lie algebra g can always be extended to a representation
of its complexification gC as

Π(z) ≡ Π(x) + iΠ(y) , z = x+ iy ∈ gC. (3.1.16)

In fact, an important result for applications of representation theory to physics is that
the complex irreps of a real Lie algebra are in 1-1 correspondence with those of its com-
plexification [43].

3.1.2 Classification of complex simple Lie algebras

All the information necessary to derive the properties of complex simple Lie algebras and
their representations is elegantly summarized in another type of mathematical structure
called a root system, first introduced by Killing [44] and studied shortly after by Car-
tan [45] in his PhD thesis. In this section we review the classification of complex simple
Lie algebras using root systems. We will take a pragmatic approach, giving constructive
definitions as often as possible.

While ultimately we are most interested in identifying compact real semisimple Lie
algebras, e.g. subalgebras of su(N), the following result allows one to achieve this by
considering only complex semisimple Lie algebras. Let g and g′ be compact real Lie
algebras. Then g and g′ are isomorphic if and only if their complexifications, gC and g′C,
are isomorphic [41]. Thus the real compact Lie algebras encountered in this work can be
identified by their complexifications.

The structure of complex Lie algebras was originally investigated by Killing who stud-
ied the so-called characteristic equation

det(adx − αI) = 0 (3.1.17)

which is nothing but the eigenvalue equation for the adjoint matrix of an arbitrary algebra
element x = xiei. This equation can be written more explicitly in terms of the structure
constants in the basis {ei}ni=1

∣∣∣∣∣∣∣∣∣∣∣∣

xici11 − α . . . xicik1 . . . xicid1
...

. . .

xici1k xicikk − α xicidk
...

. . .

xici1d xicikd xicidd − α

∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (3.1.18)
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Since adxx = [x, x] = 0, α = 0 is always a solution, and the multiplicity of this eigenvalue,
i.e. dim(ker(adx)), is called the rank3 of g. Let r ≡ rank(g), Cartan showed that r linearly
independent nullvectors of adx, call them Ha, form an Abelian subalgebra [45], i.e.

[Ha, Hb] = 0, ∀a, b = 1, . . . , r (3.1.19)

which became known as a Cartan subalgebra of g. Consequently, we have, in the adjoint
representation,

[adHa , adHb
] = 0, ∀a, b = 1, . . . , r (3.1.20)

meaning the matrices {adHa}ra=1 can be simultaneously diagonalized. That each of these
matrices is diagonalizable in the first place is part of the formal definition of a Cartan
subalgebra. Now, Equation (3.1.19) can be rewritten

adHaHb = 0 (3.1.21)

hence the elements Hb are r simultaneous nullvectors. Labelling the remaining d − r
simultaneous eigenvectors Eα according to their eigenvalues αa from each adHa

, we have

adHaEα = αaEα. (3.1.22)

The eigenvalue tuples α ∈ Rr are known as the roots of g and completely characterize its
structure. They are known as roots for historical reasons since they correspond to roots
of characteristic equations of the form (3.1.17). Now the set of d − r roots, known as a
root system R, turns out to have very special properties [40, 43], namely

◦ R spans Rr and does not contain the zero vector.

◦ Let α ∈ R, cα ∈ R if and only if c = ±1.

◦ Let α, β ∈ R, then β − 2β·α
α·αα ≡ sα(β) ∈ R.

◦ For all α, β ∈ R, the quantity 2β·α
α·α is an integer.

From these properties it is possible to show that for any two non-collinear roots α and β
making an angle θαβ , one of the following holds [43]

◦ θαβ ≡ π
2 (mod π) and α · α = β · β.

◦ θαβ ≡ 2π
3 (mod π) and α · α = β · β.

◦ θαβ ≡ 3π
4 (mod π) and α · α = 2β · β.

◦ θαβ ≡ 5π
6 (mod π) and α · α = 3β · β.

3Actually, Cartan originally defines the rank as d − dim(ker(adx)) but we will stick to the modern
definition.
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Root systems are therefore very rigid structures, in fact it is possible to classify them all
into a handful of different types. Before coming to the classification, the notion of simple
roots must be introduced. Since a root system of rank r spans Rr, we may extract a basis
for Rr from it and a basis such that each root has integer components which are either
all positive or all negative is called a set of simple roots. As an example, consider the
rank-2 root system in Figure 3.1 which is known as A2. It is straightforward to verify
that this is indeed a root system and a set of simple roots is given by α and β. Indeed,
in this basis we have the components

α = (1, 0) , β = (0, 1) , γ = (1, 1). (3.1.23)

Moreover a given set of simple roots generates a unique root system in this manner, thus

α

β

γ

-α

-β

-γ

Figure 3.1: The A2 root system.

characterizing it. All the information of a set of simple roots {αi}ri=1, i.e. angles and
relative lengths, may summarized in a r × r matrix

Cij = 2
αi · αj

αj · αj
(3.1.24)

called Cartan matrix. For the A2 root system considered above as an example, the two
simple roots satisfy α · β = − 1

2 and α · α = β · β so that the Cartan matrix is
(

2 −1
−1 2

)
(3.1.25)

In physicist language, the simple roots (and their hermitian conjugates) correspond to
the ladder operators which, as we will see in section 3.1.3, change the quantum numbers,
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i.e. the eigenvalues of the Cartan subalgebra basis elements, of the members of a multiplet,
generalizing the familiar case of su(2) and angular momentum.

There is an equivalent diagrammatic way, attributed to Dynkin [46], of conveniently
visualizing simple roots of arbitrary rank. Dynkin diagrams are constructed as follows.
For a set of r simple roots:

◦ Draw a graph with r nodes.

◦ Two nodes are connected by a simple, double or triple line if the angle between the
corresponding simple roots is 120◦, 135◦ or 150◦, respectively. Orthogonal roots are
not connected.

◦ Long roots4 are colored.

Thus, sticking to the example of the A2 root system introduced above, the Dynkin diagram
is

A2 : (3.1.26)

These diagrams are a remarkably compact way to package the information necessary to
construct a set of simple roots and thus the whole root system.

We are now in a position to concisely list all the possible root systems, and thus classify
all complex simple Lie algebras, into 4 infinite series, together known as the classical Lie
algebras, and 5 exceptional Lie algebras.

An root systems

1 2 n− 2 n− 1 n

The Lie algebras of the A series correspond to the complexifications of the special
unitary algebras

An = su(n+ 1)C (3.1.27)

and have dimension

dim(An) = n(n+ 2). (3.1.28)

Bn root systems

1 2 n− 2 n− 1 n

Algebras in the B series are the complexifications of the special orthogonal algebras
in odd dimensions

Bn = so(2n+ 1)C. (3.1.29)

Their Lie algebra dimension is

dim(Bn) = n(2n+ 1). (3.1.30)

4Root systems are made up of roots of no more than two different lengths, hence a root may always
be labelled long or short.

27



Cn root systems

1 2 n− 2 n− 1 n

The C series consists of the complexifications of the symplectic algebras

Cn = sp(2n)C (3.1.31)

and they have dimension

dim(Cn) = n(2n+ 1). (3.1.32)

Dn root systems

1 2 n− 3

n− 2

n− 1

n

In the D series are found the complexifications of the special orthogonal algebras in
even dimensions

Dn = so(2n)C. (3.1.33)

These have Lie algebra dimension

dim(Dn) = n(2n− 1). (3.1.34)

The ordering of the last three simple roots is a matter of convention but must be defined
consistently since, as we will see in the next section, it influences how the representations
are labelled.
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Exceptional root systems Lastly, there are 5 exceptional root systems, in the sense
that they are not part of an infinite series, which we list below.

E6 :
1

2

3 4 5 6

E7 :
1

2

3 4 5 6 7

E8 :
1

2

3 4 5 6 7 8

F4 :
1 2 3 4

G2 :
1 2

These algebras have dimension 78, 133, 248, 52 and 14, respectively.

Isomorphisms

There are isomorphisms between some of the low-rank root systems, and thus the corre-
sponding Lie algebras, which are sometimes referred to as exceptional isomorphisms since
they only occur for specific ranks. These are

A1 ≃ B1 ≃ C1 (3.1.35)

B2 ≃ C2 (3.1.36)

D2 ≃ A1 ⊕A1 (3.1.37)

A3 ≃ D3 (3.1.38)

as can be seen by considering the relevant Dynkin diagrams. One has the same isomor-
phisms for the compact real forms of these algebras

su(2) ≃ so(3) ≃ sp(2) (3.1.39)

so(5) ≃ sp(4) (3.1.40)

so(4) ≃ su(2)⊕ su(2) (3.1.41)

su(4) ≃ so(6). (3.1.42)
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3.1.3 Representations and weights

Consider a n-dimensional representation Π of a complex semisimple Lie algebra with a
Cartan subalgebra {Ha}ra=1, then, by definition,

[
Π(Ha),Π(Hb)

]
= Π

(
[Ha, Hb]

)
= 0 , ∀a, b = 1, . . . , r (3.1.43)

and thus the matrix representations of the Cartan subalgebra elements are simultaneously
diagonalizable. This leads to the notion of weights which live with the roots in Rr and
depend on the representation as opposed to the roots which are intrinsic properties of
the Lie algebra. Weights are defined, in analogy with roots, as eigenvalue tuples µ ≡
(µ1, ..., µr), namely,

Π(Hi)v = µiv (3.1.44)

where v ∈ Cn is a simultaneous eigenvector of the Cartan subalgebra basis elements in
the representation Π and is referred to as a weight vector. The weights, being vectors
of Rr, can be written in terms of a system of simple roots {αi}ri=1 but it is often more
convenient to write them in the basis of so-called fundamental weights {ωi}ri=1 defined by

2
ωi · αj

αj · αj
≡ δij . (3.1.45)

From this definition it is easy to see that the components of the fundamental weights in
the basis of simple roots are explicitly given by the inverse of the Cartan matrix (3.1.24)

(ωi)j =
(
C−1

)
ij
. (3.1.46)

This basis has the nice property that any weight µ has integer coordinates [43], i.e.

µ = niωi (3.1.47)

for some integers ni. Moreover, if all the integers are positive, the weight µ is said to
be dominant. The angle between a dominant weight and any simple root is comprised
between −90◦ and 90◦, or, in other words

µ · αi ≥ 0 , ∀i = 1, . . . , r. (3.1.48)

Note also that it follows from (3.1.46) that the simple roots have integer components in
the fundamental weight basis.

One may define a partial ordering, relative to the chosen basis of simple roots, for the
roots and weights

µ ⪰ λ ⇐⇒ µ− λ = ciαi , ci ∈ R+, (3.1.49)

and µ is said to be higher than λ, generalizing the su(2) ladder. This is only a partial
ordering since µ3 ⪰ µ2 and µ2 ⪰ µ1 does not imply µ3 ⪰ µ1. A weight which is higher
than all other weights is naturally called highest weight.

With these definitions, we can state several key results of representation theory for
complex semisimple Lie algebras which connect irreps and highest weights [43]. Let g be
a complex semisimple Lie algebra
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◦ Every irrep of g has a highest weight and it is dominant.

◦ Every dominant weight is the highest weight of an irrep of g.

◦ Two irreps with the same highest weight are isomorphic

Thus, irreps can be labelled uniquely by their highest weight µ which, being dominant,
is given, in the fundamental weights basis, by r positive integers

(n1, . . . , nr) (3.1.50)

known as Dynkin labels. This geometrical way of labelling the irreps is illustrated in
Figure 3.2 which shows the dominant weights for the G2 root system.

Figure 3.2: The G2 root system drawn on the fundamental weights lattice showing the
dominant weights (black dots) which are in 1-1 correspondence with the irreps of the
algebra. All the arrows are roots with blue arrows representing a set of simple roots and
red arrows the corresponding fundamental weights.

3.1.4 Dimensions and embedding indices

Given a set of simple roots and the highest weight of a representation Π, one can calculate
several characteristic quantities of that representation. First the dimension D(Π) is given
in terms of dot products by the Weyl dimension formula [42]

D(Π) =
∏

α∈R+

(µ+ ρ) · α
ρ · α (3.1.51)
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where R+ is a set of positive roots, ρ ≡ 1
2

∑
i αi is the half-sum of the positive roots and µ

is the highest weight. Given a set of simple roots, the positive roots are those roots which
are positive integer linear combinations of the simple roots. This formula is a special case
of the Weyl character formula [42] and can be used to derive the dimension of the irreps
as a function of the highest weight. This is most conveniently done in the fundamental
weight basis, where, as shown in section 3.1.3, each representation is labelled by positive
integers. Since this basis is not an orthonormal basis, one must first calculate the metric
in order to be able to compute dot products

gij = ωi · ωj (3.1.52)

= (C−1)ik αk · αl (C
−1)jl (3.1.53)

=
1

2
(C−1)ij ||αj ||2 (no sum), (3.1.54)

where we have used the expression of the fundamental weights in terms of the simple
roots (3.1.46) and the definition of the Cartan matrix (3.1.24). As an example, let us
apply the dimension formula (3.1.51) to the algebra B2 = so(5)C whose Cartan matrix is

C =

(
2 −1
−2 2

)
(3.1.55)

so that the metric in the basis of fundamental weights is
(
1 1
1 2

)
. (3.1.56)

B2 has four positive roots which have components

(1, 0), (0, 1), (1, 1), (2, 1) (3.1.57)

in the basis of simple roots and

(2,−1), (−2, 2), (0, 1), (2, 0) (3.1.58)

in the basis of fundamental weights, as can be calculated using the Cartan matrix (3.1.55).
Thus we have the half-sum of the positive roots ρ = (1, 1) and putting everything together
to compute (3.1.51) gives for the dimension of the irrep (n1, n2)

d(n1, n2) =
1

6
(n1 + 1)(n2 + 1)(n1 + n2 + 2)(n1 + 2n2 + 3). (3.1.59)

Another characteristic number which is perhaps more interesting than the dimension
and can be computed from the roots and highest weight is the representation index. It is
an integer, sometimes called Dynkin index, which for an irrep Π with highest weight µ is
given by [46]

IΠ =
D(Π)

d
µ · (µ+ 2ρ) (3.1.60)

where D(Π) is the dimension of the irrep ρ is the half-sum of the positive roots. Note that,
unlike the dimension formula (3.1.51), this expression scales with the length of the roots
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and it is customary to remove this ambiguity by normalizing the square of the length
of the longest root to 2. General properties of this index and tables for its value for
irreps of simple Lie algebras up to rank 8 can be found in [47]. The index of a reducible
representation is the sum of the indices of the component irreps and the index for the
representation of a semisimple algebra ⊕m

i=1gi with gi represented by Πi (with highest
weight µi) is

IΠ =

m∏

i=1

D(Πi)

m∑

j=1

IΠi

D(Πi)
. (3.1.61)

The Dynkin index can be used to distinguish between equidimensional representations
of a subalgebra h ⊂ g. Especially relevant for detecting symmetries are so(N) subalge-
bras of su(N), as explained in chapter 2. Indeed, several inequivalent representations
of the same subalgebra h may exist in a given representation of g. For instance, two
3-dimensional representations of su(2) ≃ so(3) are found in the defining representation of
su(3), with highest weights

(0) + (1) and (2) (3.1.62)

or, in physicist language, 1+ 2 and 3. Formally, we are considering embeddings of a
subalgebra h ⊂ g which are Lie algebra homomorphisms [48]

p : h → g (3.1.63)

X ∈ h 7→ p(X) ∈ g (3.1.64)

meaning that
[
p(X), p(Y )

]
= p

([
X,Y

])
, i.e. commutation relations are preserved. Note

that if Π is a representation of g then Πp is a representation of h. However, embeddings
need not preserve normalization and we have, in general,

tr
(
p(X)p(Y )

)
= Jp tr(XY ) , X, Y ∈ h (3.1.65)

which defines the scalar Jp. This quantity, called the embedding index of p is related to
representation indices by [46]

Jp =
IΠp

IΠ
. (3.1.66)

For embeddings into the defining representation of su(N), which always has representation
index IΠ = 1 [47], the embedding index Jp equals the index of the representation of the
subalgebra IΠp. We will see in section 3.2.3, how this number may be extracted from a
given subalgebra.

3.2 Identifying unknown algebras and representations
in practice

Suppose one is in the presence of a basis for a representation of an unknown semisimple
Lie algebra, in the form of a set of matrices {Xi}di=1 which close under the commutator

[Xi, Xj ] = ZijkXk, (3.2.1)
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and wishes to identify the algebra and its representation. We will first discuss how to
identify the algebra and then, in section 3.2.2, the representation.

First, knowing the dimension narrows down the possibilities but does not, of course,
uniquely determine an algebra. For example, the semisimple algebras

su(5) and su(4)⊕ su(2)⊕ su(2)⊕ su(2) (3.2.2)

are both 24-dimensional. In many cases, but not all, equidimensional algebras may be
distinguished by their rank which may be computed by considering a random element of
the algebra Q = xiXi. The random sampling ensures, in practice, that Q is a regular
element and, by definition [41], the dimension of the nullspace of such an element equals
the rank of the algebra

r = dim(ker(adQ)) (3.2.3)

and the nullvectors {hi}ri=1 provide a Cartan subalgebra.
In some cases, one might know that the algebra to be identified is a subalgebra of

a known algebra which further narrows down the possibilities. This is the case, for
example, in papers II and III, where all the algebras encountered were subalgebras of
su(n). Subalgebra tables can be found in, e.g., [48, 49].

3.2.1 Computing a root system

Knowing the rank of a semisimple Lie algebra and a larger algebra containing it may still
not be sufficient to unambiguously identify it. A noteworthy example is so(2n + 1) and
sp(2n) which have the same dimension n(2n+1) and rank n, are not isomorphic for n > 2,
and are both subalgebras of su(2n+ 1). In that case, one can use the Cartan subalgebra
Hi = hiXi obtained from the nullvectors of a random element Q and compute the root
vectors from the simultaneous eigenvectors of the adjoint Cartan basis elements

adH1
, . . . , adHr

(3.2.4)

as explained in details in section 3.1.2. It is then only a matter of checking which root
system one has found using the angles between roots and their relative lengths. For
example, Figure 3.3, shows the difference between the root systems for so(7) and sp(6).

3.2.2 Finding the highest weight and Dynkin labels

Having identified the algebra under investigation, one might want to know, in addition,
which representation is at hand. In order to proceed, it is necessary to pick a set of simple
roots. The defining property of a set of simple roots is that any root may be expressed
as a linear combination of simple roots with either all positive or all negative integer
coefficients. Geometrically, such a set may be found as follows. In Rr, first pick any plane
through the origin which does not contain any root vector and let n be its normal unit
vector. This defines a notion of positive (negative) roots based on α · n being positive
(negative). Then the unique set of simple roots {αi}ri=1, with respect to the chosen plane,
are the positive roots which cannot be written as the sum of two other positive roots [43].
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(a) so(7)

(b) sp(6)

Figure 3.3: Root systems of so(7) and sp(6) with long (short) roots shown in red (blue).
The root system distinguishes these two 21-dimensional rank-3 algebras. Note how the
angles are the same but the long and short roots are reversed. (Figure taken from paper
II)
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It is straightforward to check this with, e.g., Mathematica, even for large rank algebras,
and thus isolate a set of simple roots.

Now, consider the highest weight vector v0 of an irrep Π with highest weight µ = niωi,
then, by definition,

Π(Hj)v0 = µjv0 = niωijv0 , ∀j = 1, . . . , r (3.2.5)

and we must have
Π(Eαj

)v0 = 0 , ∀j = 1, . . . , r (3.2.6)

otherwise Π(Hi)Π(Eαj
)v0 = (µi+αji)Π(Eαj

)v0, for some j, and µ+αj would be a weight
higher than µ. Thus the highest weight vector v0 is annihilated by all the simple roots
and can be computed as their simultaneous nullvector. Once the highest weight vector
has been found, the components of the highest weight µ are given by (3.2.5). Note that
the eigenvalues µi are the components of µ in the canonical orthonormal basis of Rr,
i.e. µ = µiei. To obtain the integer components of the highest weight in the fundamental
weight basis, i.e. the Dynkin labels, which, as explained in section 3.1.3, conveniently
label the irreps, one may express the fundamental weights in the canonical basis and
do the coordinate transformation. However, there is an alternative method, sometimes
more practical, where one repeatedly applies the negative simple roots E−αi

= E†
αi

on
v0. Doing so for each root must eventually annihilate the highest weight vector and, in
fact, using the ”no holes” lemma of [43], one finds that the Dynkin labels ni of the irrep
are the smallest integers such that

(E−αi
)ni+1v0 = 0 (no sum). (3.2.7)

For a reducible representation, there will be one highest weight vector per irreducible
component and one can find the Dynkin labels for each component using the procedure
described above.

3.2.3 Using embedding indices

Distinguishing representations of the same subalgebra h ⊂ g given in the same normalized
basis may be done without comparing their highest weights. Indeed, suppose one has
isolated an embedding p of h in a representation of g (cf. section 3.1.4), e.g. a basis for h
in g, {p(Xi)},

[
Xi, Xj

]
= ZijkXk (3.2.8)

[
p(Xi), p(Xj)

]
= Zijkp(Xk), (3.2.9)

where Zijk are the structure constants in a normalized basis of h. Then, by defini-
tion (3.1.65),

tr
(
p(Xi)

2
)
= Jp. (3.2.10)

Hence, if one normalizes the embedded basis in g with p(X̃) ≡ J
−1/2
p p(X), then the

embedding index becomes apparent in the commutation relations
√

Jp
[
p(X̃i), p(X̃j)

]
= Zijkp(X̃k). (3.2.11)
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Therefore, by consistently normalizing bases for subalgebras h in a representation of g,
one can extract the embedding index, and thus the representation index using (3.1.66),
in commutation relations. This provides an efficient way to distinguish between equidi-
mensional representations of subalgebras.

3.2.4 Lie algebras contained in a vector space

There are cases, such as potentials featuring large degeneracies encountered in paper III,
where one has found a vector space which may or may not contain a Lie algebra. One
then faces the challenge of determining whether a subspace closes under the commutator.
This is not an easy task, since, in principle, one has to check arbitrary linear combinations
for closure. Let {Vi}qi=1 be a basis for a vector subspace W of a Lie algebra g and suppose
one would like to determine whether W contains a particular Lie algebra h. One can
proceed by first picking a simple basis of h, that is, a basis {ea}pa=1,

[
ea, eb

]
= gabcec (3.2.12)

where the structure constants gabc are as sparse as possible. Then, defining p arbitrary
vectors of W

Xa = caiVi , a = 1, . . . , p. (3.2.13)

and looking for coefficient cai satisfying the equations

Fab(c) ≡
[
Xa, Xb

]
− cabcXc , a < b ≤ p (3.2.14)

Gab(c) ≡ ⟨Xa, Xb⟩ − ⟨ea, eb⟩ , a ≤ b ≤ p (3.2.15)

where ⟨· , ·⟩ is an inner product on g. This is a system of quadratic polynomials which one
may first attempt to solve using Gröbner bases [50]. If the Gröbner basis calculation is
unsuccessful, another approach is to transform the problem into an optimization problem
by defining a cost function

J =

p∑

a<b

⟨Fab, Fab⟩+
p∑

a≤b

G2
ab (3.2.16)

which is to be minimized with respect to the pq linear combination parameters cai. So-
lutions to the original system of equations (3.2.14) and (3.2.15), if they exist, correspond
to minima where the cost function takes the value J = 0. In simple cases, when the
number of variables is low, the minimization may be carried out analytically, possibly
using a computer algebra system such as Mathematica. For larger number of variables,
a numerical optimization becomes necessary and is typically very effective.
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Chapter 4

Summary and outlook

A significant difficulty in the study of NHDMs, especially with three or more doublets,
is to see through the reparametrization invariance that is basis freedom and identify es-
sential structural features of their potentials. In this work, we have developed techniques
for tackling this problem in the case of symmetries, which are crucial for any phenomeno-
logical analysis. Detecting the symmetries of a potential in an arbitrary basis usually
involves finding basis-invariant properties characterizing them. Such signatures need not
consist of a set of scalar basis-invariants taking on special values, and methods based on
basis-invariant properties of basis-covariant objects have proven to be powerful. Since the
basis-covariant objects which determine the potential transform according to the adjoint
representation under an SU(N) basis change, there is a natural correspondence with ele-
ments of the Lie algebra su(N). This correspondence allows one to define Lie algebraic
and representation-theoretical relations among basis-covariant objects. We have shown
that the signatures of some symmetries are naturally formulated by means of such rela-
tions. In the case of CP2 and canonical custodial symmetries, the key signature is that
a subset of the basis-covariant vectors generate the defining representation of so(N). De-
tecting such representation-theoretical signatures in practice requires to identify arbitrary
instances of Lie algebras and their representations, and we have developed computational
techniques for performing these tasks. We find that the most computationally expensive
step is searching for a Lie algebra within a vector subspace. In situations where closure
is already established and a Lie algebra is isolated, its identification, either by computing
the root system and highest weight or by using embedding indices, is not computationally
demanding. Thus these methods may be implemented in numerical parameter space scans
in order to facilitate the exploration of NHDMs. In the case of CP however, our Lie al-
gebraic methods only allow us to probe the potential for explicit CP violation, i.e. before
spontaneous symmetry breaking. We have studied a concrete example of spontaneous
CP violation in Weinberg’s 3HDM from a phenomenological angle instead by looking for
observable signatures in masses and couplings of this model.

It may be possible to exploit further the Lie algebra structure of the basis-covariant
objects which determine the potential to characterize, either fully or partially, other sym-
metries. Indeed there are more su(N) subalgebras than so(N) which might be connected
to other symmetries of the potential. Moreover, it would be interesting to know if the
methods described in this thesis can be extended in order to determine whether or not a
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symmetry of the potential is spontaneously broken.
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Instituto Superior Técnico—IST, Universidade de Lisboa,

Avenida Rovisco Pais, P-1049-001 Lisboa, Portugal

(Received 14 April 2023; accepted 3 October 2023; published 30 October 2023)

We study the potential of Weinberg’s Z2 × Z2-symmetric three-Higgs-doublet model. The potential is
designed to accommodate CP violation in the scalar sector within a gauge theory, while at the same time
allowing for natural flavor conservation. This framework allows for both explicit and spontaneous CP
violation. CP can be explicitly violated when the coefficients of the potential are taken to be complex. With
coefficients chosen to be real, CP can be spontaneously violated via complex vacuum expectation values
(VEVs). In the absence of the terms leading to the possibility of CP violation, either explicit or induced by
complex VEVs, the potential has two global Uð1Þ symmetries. In this case, spontaneous symmetry
breaking would, in general, give rise to massless states. In a realistic implementation, those terms must be
included, thus preventing the existence of Goldstone bosons. A scan over parameters, imposing the
existence of a neutral state at 125 GeV that is nearly CP even shows that, in the absence of fine-tuning, the
scalar spectrum contains one or two states with masses below 125 GeV that have a significant CP-odd
component. These light states would have a low production rate via the Bjorken process and could thus
have escaped detection at the Large Electron-Positron Collider. At the LHC, the situation is less clear.
While we do not here aim for a full phenomenological study of the light states, we point out that the γγ
decay channel would be challenging to measure because of suppressed couplings to WW.

DOI: 10.1103/PhysRevD.108.075029

I. INTRODUCTION

In the Standard Model (SM) there is only one Higgs
doublet and CP cannot be violated in the scalar sector. With
the addition of one extra Higgs doublet, CP can be violated
in this sector both explicitly, via the introduction of
complex coefficients or spontaneously as was shown by
Lee [1]. Spontaneous CP violation puts the breaking of CP
and electroweak symmetry breaking on equal footing.
However, the Yukawa couplings of models with two or
more Higgs doublets lead to potentially dangerous flavor-
changing neutral currents (FCNCs), for which there
are stringent experimental limits. In order to solve this

problem for the two-Higgs-doublet model, a solution was
proposed [2,3], based on the imposition of natural flavor
conservation (NFC) resulting from an additional Z2 sym-
metry in the scalar and in the Yukawa sector, forcing all
the right-handed quarks of each sector only to couple to a
single Higgs doublet, thus eliminating FCNCs at the tree
level. However, imposing a discrete symmetry on the scalar
potential in the context of two-Higgs-doublet models
automatically leads to CP conservation. This can be evaded
by adding a term softly breaking theZ2 symmetry, in which
case CP can be spontaneously violated [4]. In 1976, it was
pointed out by Weinberg [5] that the scalar potential of
models with three Higgs doublets and with additional Z2

symmetries leading to NFC can violate CP explicitly and
can also provide a mechanism for naturally small CP
violation. Soon afterward, Branco [6] showed that this
framework also allows for the possibility of spontaneous
CP violation.
In this work we outline some important features of the

Weinberg potential with real coefficients and CP violation,
with an emphasis on the mass spectrum. A more detailed
phenomenological analysis will be presented elsewhere. In
particular, we will demonstrate that there are regions of
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parameter space where the electron electric dipole moment
is below 10−29 e · cm, as required by experiments [7]. This
is an important constraint on CP-violating three-Higgs-
doublet models (3HDMs).
It is also important to point out that the requirements

of spontaneous CP breaking and NFC lead to a class of
theories where CP nonconservation is solely due to Higgs
exchange [8]. The fact that the right-handed quarks of each
sector only couple to a single Higgs doublet allows for the
rephasing of the right-handed quarks in such a way as to
cancel the phase of the vacuum expectation value (VEV) of
the doublet to which these quarks couple, thus leading to a
real Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is by
now experimentally established that the CKM matrix is
complex [9,10], implying that if one wants to build a fully
realistic model from the point of view of flavor this issue
must be addressed. To solve this problem one might, for
instance, consider scenarios with the addition of vectorlike
quarks [11,12].
We consider the explicitly CP-conserving Z2 × Z2-

symmetric1 Weinberg potential [5], following the notation
of Ivanov and Nishi [13],

V ¼ V2 þ V4; with V4 ¼ V0 þ Vph; ð1:1aÞ

where V2 and V0 are insensitive to independent rephasing
of the Higgs doublets,

V2 ¼ −
�
m11ðϕ†

1ϕ1Þ þm22ðϕ†
2ϕ2Þ þm33ðϕ†

3ϕ3Þ
�
; ð1:1bÞ

V0 ¼ λ11ðϕ†
1ϕ1Þ2 þ λ12ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ þ λ13ðϕ†

1ϕ1Þðϕ†
3ϕ3Þ

þ λ22ðϕ†
2ϕ2Þ2 þ λ23ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ33ðϕ†

3ϕ3Þ2
þ λ012ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ þ λ013ðϕ†

1ϕ3Þðϕ†
3ϕ1Þ

þ λ023ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ; ð1:1cÞ

whereas

Vph¼ λ1ðϕ†
2ϕ3Þ2þλ2ðϕ†

3ϕ1Þ2þλ3ðϕ†
1ϕ2Þ2þH:c: ð1:1dÞ

would be sensitive to rephasing of the doublets. Explicit
CP conservation means that it is possible to make λ1, λ2, λ3
real by a rephasing of the scalar doublets. In this case CP
violation can only occur spontaneously, i.e., via complex
VEVs. For simplicity, in our discussion we choose to work
in this basis.
In the limit of fλ1; λ2; λ3g → 0 (or Vph → 0), the poten-

tial acquires two2 Uð1Þ symmetries, since both V2 and V0

are insensitive to rephasing of the fields. It is the emergence
of an additional symmetry that would allow for these terms

to be removed from the potential in a consistent way.
Different symmetries of multi-Higgs models occur fre-
quently and play an important role. As is clear from the
classification in Ref. [14], the full additional symmetry in
this limit is simply the Uð1Þ ×Uð1Þ symmetry we are
seeing here. Starting from the general Weinberg potential,
two of the scalar masses tend to zero when we approach the
limit where these Uð1Þ global symmetries emerge and are
broken by the vacuum.3

Experimentally, an SM-like scalar (hSM) has been
observed at 125.25 GeV with trilinear hSMVV (V ¼ W, Z)
gauge couplings that have very little CP-odd “contamina-
tion” [16,17]. One way to arrive at this situation is for the
coefficients of the phase-sensitive terms of the potential
to be small. In the limit when these terms vanish, CP is
conserved and the physical scalars have definite CP
parities. As stated earlier, there will also be two massless
states in this limit, as long as all VEVs are nonzero.
At this point, it is useful to comment on “natural”

alignment, when the hSMVV coupling automatically attains
full strength due to the symmetry of the potential. Pilaftsis
has shown [18] (see also Ref. [19]) that this happens in
a 3HDM if the quartic part of the potential has an Sp(6),
SU(3), or SOð3Þ × CP symmetry. Another possibility is to
have an unbrokenZ2 × Z2 symmetry. In our framework we
requireCP to be broken spontaneously. In order to haveCP
violation λ1, λ2, and λ3 must be simultaneously nonzero and
all VEVs must be different from zero. The latter breaks the
Z2 × Z2 symmetry. Therefore, there is no natural alignment
in this case. Since both the Weinberg Z2 × Z2-symmetric
potential and the Uð1Þ ×Uð1Þ-symmetric limit contain
terms not compatible with these higher symmetries, it
follows that natural alignment is not available in the present
framework. In particular, we note that CP violation is not
compatible with natural alignment.
In this work, we instead enforce alignment as a constraint

on the parameters, leaving room for small deviations.
In view of the above discussion, it is interesting to

explore whether the spectrum will contain two light states,
lighter than the one whose trilinear hVV gauge coupling is
SM-like. What we will see in our parameter scans is the
following feature:
In a realistic case, i.e., with an SM-like Higgs boson at

mh ¼ 125.25 GeV, the scenario where the SM-like scalar
is the lightest requires fine-tuning. That is, in the bulk of
the acceptable parameter space, lighter neutral scalars are

1The potential is separately symmetric under ϕi → −ϕi for all
three ϕi, which means that there are in fact three Z2 symmetries.

2The third Uð1Þ symmetry can be absorbed in the Uð1Þ
hypercharge symmetry.

3The masses are continuous functions of the couplings of the
phase-sensitive part of the potential: The masses squared are the
roots of the characteristic polynomial of the mass-squared matrix.
The coefficients of this characteristic polynomial will be poly-
nomials in the couplings of the phase-sensitive part of the
potential, i.e., continuous functions of these couplings. Moreover,
the roots of a polynomial are continuous functions of the
coefficients (see, e.g., [15]), so then the masses squared are
continuous functions of the phase-sensitive couplings.
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predicted. These generally have a considerable CP-odd
content.
Moreover, those light states would have suppressed

trilinear gauge couplings hiWW and hiZZ (i ¼ 1, 2), since
these couplings are constrained by the orthogonality of the
mixing matrix; hence they may have escaped detection at
the Large Electron-Positron Collider (LEP).
The paper is organized as follows. In Sec. II we minimize

the Weinberg potential, and discuss CP conservation and
properties of the mass matrices, introducing at the same
time notation and definitions used in the remainder of
the article. Section III presents the couplings among the
electroweak gauge bosons and the scalars, and Sec. IV
presents the Yukawa couplings. Then, in Sec. V we present
results of a scan over the potential parameters, subject to a
set of well-established constraints. In Sec. VI we compare
two ways of accommodating the discovered SM-like Higgs
particle in this potential, with either one or two states being
lighter. Finally, Sec. VII contains concluding remarks. The
expressions for the mass-squared matrices and pseudo-
Goldstone masses are given in Appendix A and a simple
version of the model, which turns out to conserve CP, is
discussed in Appendix B.

II. GENERAL PROPERTIES OF THE WEINBERG
POTENTIAL

We give here some basic properties of the minimum of
the potential and comment on conditions for CP conser-
vation. Such conditions can be analyzed from the point of
view of CP-odd scalar basis invariants [20,21] (see also
Ref. [22]), but a complete discussion is beyond the scope
of this work and will be presented elsewhere. We will
here only note that CP is conserved whenever any coupling
in Vph vanishes (provided all VEVs are nonzero) or
sinð2θ2 − 2θ3Þ ¼ 0.4

A. Minimizing the potential

By an overall phase rotation, we choose the VEVof ϕ1,
w1 ≡ v1 real, whereas the other VEVs, w2 and w3 will, in
general, be complex. We introduce phases θi by

wi ¼ vieiθi ; i ¼ 2; 3; ð2:1Þ

with v21 þ v22 þ v23 ¼ v2 and v ¼ 246 GeV. We will thus
represent the different vacua in the form

fw1; w2; w3g ¼ fv1; v2eiθ2 ; v3eiθ3g: ð2:2Þ

It is convenient to extract an overall phase factor and
decompose the SU(2) doublets as

ϕi ¼ eiθi
�

ϕþ
i

ðvi þ ηi þ iχiÞ=
ffiffiffi
2

p
�
; i ¼ 1; 2; 3: ð2:3Þ

In our convention, θ1 ¼ 0, ϕ1 being a reference for the
phases of the other fields.
In general, CP is violated, so we cannot assign CP

parities to the fields ηi and χi. However, since they are
independent fields, they have opposite “CP content” in the
sense that the product ηiχi is odd under CP.
The minimization with respect to the moduli of the

VEVs gives

m11 ¼ λ11v21 þ
1

2
λ̄12v22 þ

1

2
λ̄13v23 þ λ2 cosð2θ3Þv23

þ λ3 cosð2θ2Þv22; ð2:4aÞ

m22 ¼ λ22v22 þ
1

2
λ̄12v21 þ

1

2
λ̄23v23 þ λ1 cos ð2θ3 − 2θ2Þv23

þ λ3 cosð2θ2Þv21; ð2:4bÞ

m33 ¼ λ33v23 þ
1

2
λ̄13v21 þ

1

2
λ̄23v22 þ λ1 cos ð2θ3 − 2θ2Þv22

þ λ2 cosð2θ3Þv21; ð2:4cÞ

where we introduced the abbreviations

λ̄12 ≡ λ12 þ λ012; λ̄13 ≡ λ13 þ λ013; λ̄23 ≡ λ23 þ λ023:

ð2:5Þ

These abbreviations are also useful for the neutral-sector
mass matrices.
There are two minimization constraints with respect to

the phases. These can be expressed as

λ1v23 sinð2θ2 − 2θ3Þ þ λ3v21 sin 2θ2 ¼ 0; ð2:6aÞ

λ1v22 sinð2θ3 − 2θ2Þ þ λ2v21 sin 2θ3 ¼ 0: ð2:6bÞ

From these two relations, it follows that the two phases are
related via

λ3v22 sin 2θ2 þ λ2v23 sin 2θ3 ¼ 0: ð2:7Þ

It also follows that the relative sign of sin 2θ2 and sin 2θ3 is
the opposite of the relative sign between λ2 and λ3.

5

One can impose these two conditions (2.6) by substitut-
ing for λ2 and λ3,

4Let the indices fi; j; kg be some permutation of f1; 2; 3g, and
consider the vanishing of λi: The minimization conditions will
then enforce the vanishing of λj and λk, unless the angles take on
special values. Whenever all λl’s vanish Vph also vanishes and all
VEVs can be made real. 5The ranges of these parameters could accordingly be reduced.
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λ2 ¼
λ1v22 sinð2θ2 − 2θ3Þ

v21 sin 2θ3
; ð2:8aÞ

λ3 ¼ −
λ1v23 sinð2θ2 − 2θ3Þ

v21 sin 2θ2
: ð2:8bÞ

Insisting on perturbativity, we require all λi ∈ ½−4π; 4π�.
Thus, whenever θ2 or θ3 is small, the other angle must be
close (modulo π=2).
Alternatively, the minimization conditions (2.6) yield the

solutions [6]6

cos 2θ2 ¼
1

2

�
D23D31

D2
12

−
D31

D23

−
D23

D31

�
; ð2:9aÞ

cos 2θ3 ¼
1

2

�
D23D12

D2
31

−
D12

D23

−
D23

D12

�
; ð2:9bÞ

with

D12 ¼ λ3ðv1v2Þ2; D23 ¼ λ1ðv2v3Þ2;
D31 ¼ λ2ðv3v1Þ2: ð2:10Þ

Interpreting the Dij as sides in a triangle [6] requires λ1, λ2,
and λ3 to all be positive. As noted above, θ2 and θ3 must
then have opposite signs.

B. The case θ2 = θ3 +nπ=2

When θ2 and θ3 differ by a multiple of π=2, the first
terms of Eq. (2.6) vanish. These minimization conditions
then require one of the following to be satisfied (assuming
all VEVs are nonzero):
(1) λ2 ¼ λ3 ¼ 0,
(2) λ2 ¼ 0, sin 2θ2 ¼ 0,
(3) λ3 ¼ 0, sin 2θ3 ¼ 0, and
(4) sin 2θ2 ¼ sin 2θ3 ¼ 0.

All these cases are CP conserving and will not be
considered in the following.
θ2 ¼ θ3: When θ2 ¼ θ3 we may go to a basis in which

w2 and w3 are real, and w1 is complex. It then follows that
we have only one minimization condition with respect to
phases; there will remain a “leftover” field on which the
mass-squared matrix does not depend, i.e., a massless state.
θ2 ¼ θ3 � π: This case is essentially equivalent to the

case above, except for some sign changes.
θ2 ¼ θ3 � π=2: This case is also essentially equivalent to

the case above, except for an interchange of the ηi and χi
fields in one doublet.

C. Rotating to a Higgs basis

To make these mass-squared matrices as simple as
possible and to easily identify the SM Higgs in the neutral
mass spectrum [cf. Eq. (5.1) below], it is convenient to
rotate the Higgs doublets to a Higgs basis, where only one
doublet has a nonzero VEV.
A suitable Higgs basis is reached by the transformation

R2R1

0
@ v1

eiθ2v2
eiθ3v3

1
A ¼

0
@ v

0

0

1
A; ð2:11Þ

with

R1 ¼
�
1 0

0 R1

�
; R1 ¼

1

w

�
v2e−iθ2 v3e−iθ3

−v3e−iθ2 v2e−iθ3

�
;

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 þ v23

q
; ð2:12Þ

and

R2 ¼
1

v

0
B@

v1 w 0

−w v1 0

0 0 v

1
CA: ð2:13Þ

Thus, the Higgs basis [with SU(2) doublets H1, H2 and
H3] is reached by R≡R2R1,0

B@
H1

H2

H3

1
CA ¼ R

0
B@

ϕ1

ϕ2

ϕ3

1
CA ¼ R̃

0
B@

ϕ1

e−iθ2ϕ2

e−iθ3ϕ3

1
CA; ð2:14Þ

with

R̃ ¼ R2

1

w

0
B@

w 0 0

0 v2 v3
0 −v3 v2

1
CA ð2:15Þ

in fact real.
We decompose the Higgs-basis fields as

H1 ¼
�

Gþ	
vþ ηHB1 þ iG0



=
ffiffiffi
2

p
�
;

Hi ¼
 

φHBþ
i	

ηHBi þ iχHBi


=
ffiffiffi
2

p
!
; i ¼ 2; 3; ð2:16Þ

and enumerate the neutral fields f1; 2; 3; 4; 5g according to
the following sequence:

φHB
i ¼ �ηHB1 ; ηHB2 ; ηHB3 ; χHB2 ; χHB3

�
; i ¼ 1;…5: ð2:17Þ

6These expressions differ from those of Ref. [6] since we take
ϕ1 rather than ϕ2 to have a real VEV.
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D. Masses

The elements of the 2 × 2 charged mass-squared
matrix M2

ch, as well as the masses squared, are given in
Appendix A 1, while the elements of the 5 × 5 neutral
mass-squared matrix M2

neut are given in Appendix A 2.
Moreover, we give Oðλ1Þ formulas for the masses squared
of the pseudo-Goldstone bosons in Appendix A 2 a.
We diagonalize the general neutral mass-squared matrix

by a 5 × 5 rotation matrix O to obtain the mass eigenstates,

hi ¼ Oijφ
HB
j ; ð2:18Þ

with φHB
j defined by Eq. (2.17).

Since the mass-squared matrix of the neutral sector is
5 × 5, the rotation matrix O of Eq. (2.18) can only be
numerically determined. This somewhat limits our analysis.
In Appendix A 2 we schematically quote the determinant
(A8) of the neutral-sector mass-squared matrix. It is
proportional to λ21, reflecting the fact that the potential
has two massless states in the limit λ1 → 0.
In Appendix B we briefly discuss a “minimal” version of

the potential, with λ3 ¼ �λ2, θ3 ¼∓ θ2, and v3 ¼ v2. The
mass-squared matrix of the neutral sector factorizes in that
case, each factor vanishing linearly with λ1. This suggests
that these factors are related to the pseudo-Goldstone
bosons.

1. Special cases

As shown in Appendix A 2, the mass-squared matrix for
the neutral sector has the structure

M2
neut ¼

0
BBBBBB@

X X X 0 0

X X X 0 x

X X X x 0

0 0 x x x

0 x 0 x x

1
CCCCCCA















ηHB1
ηHB2
ηHB3
χHB2
χHB3














; ð2:19Þ

where elements that vanish as λ1 → 0 are denoted by lower-
case x. The column to the right is a reminder of the field
sequence in the Higgs basis. If we put sinð2θ2 − 2θ3Þ ¼ 0
we get a block-diagonal form with one massless state

M2
neut ¼

0
BBBBBB@

X X X 0 0

X X X 0 0

X X X 0 0

0 0 0 0 0

0 0 0 0 x

1
CCCCCCA















ηHB1
ηHB2
ηHB3
χHB2
χHB3














: ð2:20Þ

The condition λ1 ¼ 0 [instead of sinð2θ2 − 2θ3Þ ¼ 0] gives
the above texture, only with a vanishing element on the last
row and column (x → 0), yielding a block-diagonal form
with two massless CP-odd states.
Finally, for the “simple model” of Appendix B we have

M2
neut ¼

0
BBBBBB@

X X 0 0 0

X X x 0 0

0 x x 0 0

0 0 0 x x

0 0 0 x X

1
CCCCCCA















ηHB1
ηHB2
χHB3
χHB2
ηHB3














; ð2:21Þ

which is also block diagonal, having interchanged rows
(and columns) 3 and 5, i.e., swapped ηHB3 and χHB3 .

III. GAUGE COUPLINGS

The gauge-scalar couplings are determined by the kinetic
part of the Lagrangian,

Lkin ¼
X

i¼1;2;3

ðDμϕiÞ†ðDμϕiÞ: ð3:1Þ

For the cubic gauge-gauge-scalar part, we get

LVVh ¼
�
gmWWþ

μ Wμ− þ gmZ

2 cos θW
ZμZμ

�X5
i¼1

Oi1hi;

ð3:2Þ
with the rotation matrix O relating physical states to the
fields of the Higgs basis, as defined by Eq. (2.18). For the
SM-like state at 125.25 GeV, this coupling Oi1 is severely
constrained by the LHC measurements [23]. Its magnitude
must be close to unity.
For the cubic gauge-scalar-scalar terms, we find

LVhh ¼ −
g

2 cosθW

X5
i¼1

X5
j¼1

	
Oi2Oj4 þOi3Oj5


	
hi∂μ

↔
hj


Zμ þ g

2

X5
i¼1

X2
j¼1

�	
iOijþ1 þOijþ3


X2
k¼1

Ujkðhþk ∂μ
↔
hiÞWμ− þH:c:

�

þ
�
ieAμ þ ig cos2θW

2 cosθW
Zμ

�X2
j¼1

	
hþj ∂μ

↔
h−j


; ð3:3Þ

and for the quartic gauge-gauge-scalar-scalar terms, we find
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LVVhh ¼
�
g2

4
Wþ

μ Wμ− þ g2

8cos2θW
ZμZμ

�X5
i¼1

h2i þ
�
g2

2
Wþ

μ Wμ− þ e2AμAμ þ g2cos22θW
cos2θW

ZμZμ þ eg cos 2θW
cos θW

AμZμ

�

×
X2
j¼1

hþj h
−
j þ

��
eg
2
Wþ

μ Aμ −
g2sin2θW
2 cos θW

Wþ
μ Zμ

�X5
i¼1

X2
j;k¼1

Ujkhih−k
	
Oijþ1 þ iOijþ3


þ H:c:

�
: ð3:4Þ

We have argued that the vicinity of the Uð1Þ ×Uð1Þ
symmetry should have an impact on the scalar sector,
leading to light states that when λ1 → 0 reveal their
Goldstone origin and become odd under CP. In order to
shed light on this, we will analyze the coupling of the
Z boson to a pair of scalars. Since Z is odd under CP, it
will only couple to the odd component of a two-scalar
state hihj, not the even part. This odd component attains
its maximal value when one scalar is even and the other
is odd.
A measure of the CP content of two states is obtained

from the trilinear coupling hihjZ. From the first line of
Eq. (3.3), an obvious measure is

Pij ¼ ðOi2Oj4 þOi3Oj5Þ − ði ↔ jÞ: ð3:5Þ

We shall refer to it as the “Z affinity” of a pair of scalars.
A high affinity would mean that the hihj two-scalar
state has a significant CP-odd component. Since a two-
particle state consisting of two even or two odd scalars
would be CP even, we shall somewhat imprecisely refer to
the above situation of a large jPijj as saying the two states
have different CP profiles. The quantity Pij is basis
independent, since it refers to a coupling among physical
states.
As a reference, it is worth analyzing the Z affinities of

pairs of scalars in the CP-conserving 2HDM. We adopt the
conventional terminology of h andH being even under CP,
whereas A is odd. Furthermore, we take h to be the SM state
at 125 GeV. One readily finds that the Z affinity of h and H
(both CP even) is zero, whereas that of H and A is unity.
However, by the above definition and in the limit of
alignment, the Z affinity of h and A is also zero. With
h ¼ hj aligned, we have Oj1 ¼ 1, and (by orthogonality)
Ok1 ¼ Ojk ¼ 0, with k ≠ j. Thus, when hj is aligned, then
Pkj ¼ Pjk ¼ 0 for all k.
Whereas in the 2HDM, allowing for CP violation, the

hihjZ couplings are essentially the same as the hkZZ
couplings [24], with i, j, k all different, this is not the case
in a 3HDM.
Since Pij ¼ −Pji and Pii ¼ 0, it follows that there are

ten quantities, matching the fact that the rotation matrix
O can be generated by ten independent angles. Invoking
the orthogonality of the rotation matrix, as well as the
five independent hiVV couplings Oi1, it has been
shown that there are, in fact, only seven independent

couplings [25].7 We do, however, find it more transparent
to work within this set of ten quantities (3.5), but note from
the 2HDM example given above that different CP does not
necessarily yield a high value for jPijj. However, a high
value for jPijj can only emerge from states having different
CP content.
One may extend the usefulness of the measure of relative

CP of two states into the region of small, but nonzero Oj1

by normalizing it to the squared sum of even and odd
couplings,

P̂ij ¼
Pijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

minðO2
i1; O

2
j1Þ þ P2

ij

q ; ð3:6Þ

with Oi1 representing the CP-even part of the ZZhi
coupling. This measure enhances the affinity in parameter
regions where it would otherwise be small, due to near
alignment.8

A measure of the CP-odd content of a state can be
obtained by summing the square of this coupling over all the
other states, j ≠ i. We denote the square of this quantity P̃2

i ,

P̃2
i ¼

X
j≠i

P2
ij ¼

X
j

P2
ij ¼

X
j≠i

O2
j1 ¼ 1 −O2

i1; ð3:7Þ

where in the second step we have used the fact that Pii ¼ 0
and, in the following, the orthogonality of O. This has a
straightforward interpretation: While we may think of jOi1j
as a measure of the CP-even content of hi, we may think of

P̃i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −O2

i1

q
ð3:8Þ

as the CP-odd part.

IV. YUKAWA COUPLINGS

With complex VEVs, there will also be CP violation in
the Yukawa sector, even with real Yukawa couplings. The
actual amount of CP violation will depend on how the

7This mismatch between the ten underlying rotation angles and
the seven independent couplings is due to the fact that some sets
of rotation angles ðα12; α13;…; α45Þ and ðα012; α013;…; α045Þ yield
the same rotation matrix O.

8This normalization would fail in the zero-measure limit of both
hi and hj being purely CP odd, i.e., having minðOi1; Oj1Þ ¼ 0
and Pij ¼ 0.
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SU(2) doublets couple to the fermions. As an example, we
shall consider natural flavor conservation, where each
fermion species couples to at most one Higgs doublet [2].
One way to implement this is to let each right-handed
fermion sector u, d, and e couple to a different Higgs
doublet according to the following Z2 × Z2 charges:

ϕ1∶ðþ1;þ1Þ ϕ2∶ð−1;þ1Þ ϕ3∶ðþ1;−1Þ; ð4:1aÞ

uR∶ðþ1;þ1Þ dR∶ð−1;þ1Þ eR∶ðþ1;−1Þ: ð4:1bÞ

Then the Yukawa Lagrangian takes the form

LY ¼ Q̄LYuϕ̃1uR þ Q̄LYdϕ2dR þ ĒLYeϕ3eR þH:c: ð4:2Þ

Expanding the doublets and rewriting the Yukawa neutral
interactions in terms of the physical fermion fields, we
obtain, in addition to mass terms,

Lneutral
Y ¼ 1

v1
ūMuðη1 þ iχ1γ5Þuþ 1

v2
d̄Mdðη2 þ iχ2γ5Þd

þ 1

v3
ēMeðη3 þ iχ3γ5Þe: ð4:3Þ

Mixing between the ηi and χi fields will cause the neutral
physical scalars to have CP-violating interactions with the
fermions. The Yukawa interaction between a neutral
physical scalar hi and a fermion f takes the general form

Lhiff ¼ mf

v
hi
	
κhifff̄f þ iκ̃hifff̄γ5f



: ð4:4Þ

This structure can be used to quantify the CP content of the
physical scalars. For the case of ττ̄ final states, CMS [26]
has measured this mixing, defined through

tan αhSMττ ¼ κ̃hSMττ

κhSMττ
: ð4:5Þ

It has also been suggested to try to measure this quantity for
the 2HDM [27].
In order to identify this quantity, we need to express the

fields ηi and χi of Eq. (4.3) in terms of the physical scalars,
which are not eigenstates of CP. For this purpose, we start
by “undoing” the transformation to the Higgs basis (2.14),
writing the inverse, for the neutral fields, in the form

0
B@

η1 þ iχ1
η2 þ iχ2
η3 þ iχ3

1
CA ¼ R̃T

0
B@

ηHB1 þ iG0

ηHB2 þ iχHB2
ηHB3 þ iχHB3

1
CA; ð4:6Þ

with R̃ given by Eq. (2.15). Next, the ηHBi and χHBi ,
collectively referred to as φHB

i according to Eq. (2.17), can
be expressed in terms of the physical states hi via Eq. (2.18).

If we introduce a complex quantity for the couplings to
ϕk according to Eq. (4.3),

ZðkÞ
i ¼ 	R̃T



k1Oi1 þ

	
R̃T


k2ðOi2 þ iOi4Þ

þ 	R̃T


k3ðOi3 þ iOi5Þ

¼ R̃1kOi1 þ R̃2kðOi2 þ iOi4Þ þ R̃3kðOi3 þ iOi5Þ;
ð4:7Þ

then for the coupling of hi to ττ̄ (k ¼ 3), we have

κhiee ¼ v
v3

ReZð3Þ
i ; κ̃hiee ¼ v

v3
ImZð3Þ

i ; ð4:8Þ

and

αhiττ ¼ arg
	
Zð3Þ
i



: ð4:9Þ

Some quantitative comments on this quantity will be
presented in Sec. VI C.
As pointed out in the Introduction, this model cannot

generate a complex CKM matrix and therefore cannot be
considered as the full description.

V. PARAMETER SCANS OF THE SCALAR
POTENTIAL

The fact that LHC experiments have determined the
Higgs-gauge coupling hSMWW to be very close to the SM
value shows that the observed Higgs state is essentially
pure scalar, with no or very little pseudoscalar admixture.
In the notation of Eq. (3.2), this means that

jOj1j ≃ 1; for some j: ð5:1Þ

We have performed scans over parameters, analyzing the
mass spectrum and imposing a condition on the coupling of
the SM-like state to two gauge bosons. Each parameter
point is required to satisfy boundedness from below,
perturbativity, and tree-level unitarity. For boundedness
from below, only sufficient conditions are known for the
Z2 × Z2-symmetric potential [28,29] and we therefore opt
for a numerical check, whereas conditions for tree-level
unitarity conditions are taken from [30]. We uniformly
sample the parameters in the largest region where all the
above constraints can be met9

9Alternatively, the scan could be “factorized” into a scan over
the parameters determining the neutral sector, replacing λij and
λ0ij by λ̄ij, and another over the charged sector. Qualitatively, the
results are found to be similar.
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vi∈ ½0; v�; i ¼ 1; 2; 3; with v21 þ v22 þ v23 ¼ v2;

ð5:2aÞ

θi ∈ ½−π; π�; i ¼ 2; 3; ð5:2bÞ

λii ∈ ½0; 4π�; i ¼ 1; 2; 3; ð5:2cÞ

λij; λ0ij ∈ ½−4π; 4π�; i; j ¼ 1; 2; 3; ð5:2dÞ

λ1 ∈ ½−4π; 4π�: ð5:2eÞ

From these parameters one can reconstruct the mass-
squared matrices and diagonalize them. The neutral mass
eigenvalues are ordered as

m1 < m2 < m3 < m4 < m5: ð5:3Þ

Since the mass-squared matrix is homogeneous in the
λ’s, we can rescale the λ’s (all by the same factor) and
thereby rescale the masses. The analysis of the sampled
parameter points is performed as follows. For each j ¼ 1
to 5:
(1) check that the coupling Oj1 of hj to WW (or ZZ) is

compatible with LHC measurements [23] (at most
one value of j will be accepted),

(2) rescale all λ’s such that mj ¼ mSM ¼ 125.25 GeV,

(3) apply theoretical cuts (boundedness from below,
perturbativity, and tree-level unitarity) on all re-
scaled λ’s (including λ2 and λ3), and

(4) check that the lightest charged scalar is above 80 GeV.
If these conditions are satisfied, the parameter point is kept.
Regarding the LHC measurements of the Higgs-gauge
couplings hVV (V ¼ W, Z), we use the ATLAS run 2 value
for the coupling modifier κV [23] with a 3σ tolerance,
resulting in the following constraint for the SM-like state:

jOj1j > 0.93: ð5:4Þ

Thus, we obtain the hj distribution given in Table I. The
theoretical constraints referred to under point 3 are bound-
edness from below (within the limitation specified above),
perturbativity, and unitarity. We note that if these essential
experimental and theoretical constraints are to be satisfied
then the scenario where h1 is the SM-like state requires
fine-tuning of the parameters.
We observe that small values of λi are required to satisfy

all the constraints. This is illustrated by Fig. 1, where it is
seen that the distribution of λ1 becomes narrower as the
constraint on the hiVV coupling is applied. The further
constraints from boundedness from below and unitarity
(right-hand panel) have only a modest impact. These
histograms can be characterized by their rms values:

λ1junconstrained ¼ 1.91; λ1j3σ ¼ 0.66;

λ1j3σþth cuts ¼ 0.37: ð5:5Þ

Thus, when the constraint on the hiVV coupling is
imposed, this potential has an approximate Uð1Þ ×Uð1Þ
symmetry in a sizable fraction of its viable parameter space.
The parameter points have also been analyzed in terms

of the average (rms) Pij, representing the coupling of two

TABLE I. Distribution (in percentage) of hj with gauge
coupling hjWW in agreement with the SM, within 3σ.

h1 h2 h3 h4 h5

PDG [23] 0.31 38.23 28.00 22.51 10.95
ATLAS [31] 0.31 38.53 27.12 21.19 12.85
With theoretical cuts 0.01 27.88 30.69 27.68 13.74

FIG. 1. Histograms of λ1 without (left) and with (center and right) the constraint jðOj1Þ2 − κ2V j < nσ with n ¼ 3. On the right, we show
the impact of imposing further theory constraints (see text).
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neutral scalars to the Z boson, defined by Eq. (3.5). We
interpret this as a measure of their relative CP. We have
also studied the absolute CP-odd content, as defined by
Eq. (3.8). If the average (rms) Pij is large, we say their CP
content is different (even if the absolute P̃i and P̃j might be
similar), whereas if it is small, we shall say that their CP
content is similar.
For this study, as a reference, we also analyzed parameter

points that were not subject to the experimental SM-like
Higgs constraints described above. In Fig. 2 we compare
rms Z affinities for all pairs of neutral scalars and for two
cases, both without the SM-like constraint. In the left panel,
we impose a “near Uð1Þ ×Uð1Þ symmetry” condition

maxðjλ1j; jλ2j; jλ3jÞ ¼ 0.01; ð5:6Þ

whereas in the right panel we impose no such constraint,
i.e., we do not restrict the scan to the regime of nearUð1Þ ×
Uð1Þ symmetry. The left panel shows a clear separation
into two sets of states, h1 and h2 have low affinity to the Z,
meaning they have similar CP content, as does the other
set, h3, h4, and h5. It is natural to interpret this as follows:
Near the Uð1Þ ×Uð1Þ limit, we have two neutral states
that are approximately odd under CP and three that are
approximately even. This is fully in accord with the
expectations from the Goldstone theorem [32,33], since
the Goldstone bosons in the Uð1Þ ×Uð1Þ limit will be
CP odd [34].
It is instructive to consider how the Z affinity is affected

by alignment. Let hj be “aligned,” meaning its coupling to
WW is maximal, Oj1 ¼ 1. By orthogonality, it follows that
Ok1 ¼ 0 for k ≠ j and Ojk ¼ 0 for k ≠ 1. Then,

Pij ¼ Pji ¼ 0 for all i; ð5:7Þ

the aligned scalar hj has no Z affinity with any other hi [34].
This is analogous to the CP-even and aligned (and SM-like)
h in aCP-conserving 2HDM not having any Z affinity to the
pseudoscalar A, even though they have opposite CP.

The features displayed in Fig. 2 change when we turn on
the SM-like constraint. We shall next consider h2 and h3 as
candidates for being the discovered state at 125.25 GeV.

VI. ACCOMMODATING AN SM-LIKE STATE hSM

Assuming h2 or h3 is identified as hSM, we shall here first
discuss the CP profiles of the light states, as determined
from the gauge couplings, and then subsequently study the
Yukawa couplings.

A. h2 as hSM
We first consider the possibility that h2 is to be identified

with the discovered SM-like state at 125.25 GeV, as
suggested by Table I.
For the parameter points that survive the constraints, we

show in Fig. 3 the distributions of the complex VEVs v2eiθ2

and v3eiθ3 . Superimposed on circular structures with
“holes” at v2 ¼ 0 and v3 ¼ 0, there are depressions at
purely real and purely imaginary values. The latter are due
to the fact that λ2 and/or λ3 become nonperturbative when
j sin 2θ2j or j sin 2θ3j are small.

FIG. 2. Average Z affinity ðPijÞrms of states hi and hj. Left: the Uð1Þ ×Uð1Þ limit, as defined by Eq. (5.6). Right: no restriction
on the λ’s.

FIG. 3. Scatter plots of real and imaginary parts of the complex
VEVs v2eiθ2=v (left) and v3eiθ3=v (right), for h2 ¼ hSM. The
number of surviving parameter points increases when going from
dark blue to yellow.
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If h2 were the discovered Higgs particle at 125.25 GeV,
why has h1 escaped detection? Searches at LEP [35,36]
depend on production via the Bjorken mechanism, where
the hZZ coupling is essential. But within the present
scenario, the h1ZZ coupling O11 is suppressed. This is
illustrated in Fig. 4, where we plot

C2
1 ≡ jO11j2 ð6:1Þ

vs m1. The bulk of the scan points lie at masses below
50 GeV and for a squared coupling of the order 10−2. This
suppression is simply a result of the unitarity of the mixing
matrix O.
It is interesting to examine the profile of the neutral state

h1 that in this scenario is lighter than 125 GeV. Is it related
to the breaking of the Uð1Þ symmetries discussed in the
Introduction? In particular, does it have a significant
CP-odd content? Since the gauge field Z is odd under
CP, we can ask how large the h1h2Z coupling is, recalling
that, in the familiarCP-conserving 2HDM, there is anHAZ
coupling of strength 1 [in units of g=ð2 cos θWÞ]. The
corresponding coupling is for the Weinberg potential given
by Eq. (3.6), from the first term of Eq. (3.3). We show in
Fig. 5 the distribution of the h2hjZ couplings, in the above
units. The strongest coupling is seen to be to hj ¼ h1,
consistent with it having a sizable CP-odd component.

B. h3 as hSM
We next assume that h3 is to be identified as the

discovered SM-like scalar.
For the parameter points that survive the above constraints

on maximal allowed value of the jλj’s and minimum allowed
charged Higgs mass, we show in Fig. 6 the distributions of
the complex VEVs v2eiθ2 and v3eiθ3 . As compared with the

previous case, h2 ¼ hSM, the small-v2 and small-v3 regions
are here less depleted.
In analogy with the case above, we examine the profile

of the neutral states h1 and h2 that in this scenario are
lighter than 125 GeVand show in Fig. 7 the distribution of
h3hjZ couplings. The strongest coupling is again seen to be
to hj ¼ h1.

C. Yukawa couplings

Returning now to the Yukawa couplings, we study the
angle α, which is a measure of the relative CP-odd
component of this coupling. In Fig. 8 we show scatter
plots10 of α (in units of its maximum value, π=2) for the five
different neutral states in the two scenarios h2 ¼ hSM and
h3 ¼ hSM. In both cases hSM is subject to the constraint
jαj < 0.1, which ensures that the CP-odd part of the

FIG. 4. Distributions of squared gauge couplings C2
1 of h1 vs

mass (arbitrary units, with yellow “high” and dark blue “low”).

FIG. 5. Frequency distribution of the relative strength jP̂2jj of the
h2hjZ couplings, in units of g=ð2 cos θWÞ (along the y axis) vs hj.

FIG. 6. Scatter plots of real and imaginary parts of the complex
VEVs v2eiθ2=v (left) and v3eiθ3=v (right) for h3 ¼ hSM. Yellow is
high, dark blue is low.

10For better visibility, the points are randomly distributed along
the horizontal dimension.
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Yukawa coupling hSMτ̄τ is consistent with experimental
measurements [26].
This figure supports the feature of theWeinberg potential

presented in the Introduction: in each scenario, the states
lighter than hSM are more likely to have a significant CP-
odd content than the heavier ones.
It should be stressed that the results shown in Fig. 8

depend on how natural flavor conservation is implemented,
cf. (4.1). Because of the symmetry (statistically speaking)
of the potential under interchange of ϕi with ϕj, the scan
result does not depend on whether the fermion in question
(here, the τ) is coupled to ϕ1, ϕ2, or ϕ3. What is important,
though, is the fact that it is coupled to only one doublet. The
outcome would be different if the assumption of natural

flavor conservation were relaxed. If τ, e.g., couples to both
ϕ2 and ϕ3, then the angle α would instead be given by

αhiττ ¼ arg

�
v
v2

Zð2Þ
i þ v

v3
Zð3Þ
i

�
: ð6:2Þ

VII. CONCLUSIONS

We have explored the spectrum of the Weinberg scalar
potential with real coefficients in some detail, determining
the CP profiles of the neutral states from how they couple
to the electroweak gauge bosons and to fermions. We find
that if this potential accommodates the discovered, approx-
imately CP-even Higgs boson at 125.25 GeV, then it
naturally (i.e., in the absence of fine-tuning) predicts one
or two lighter neutral states. While the model violates CP,
one of these states, or both, would have a significant CP-
odd content.
One might wonder whether or not imposing the con-

ditions listed in Sec. V in our parameter scan would bring
us close to one of the symmetries obtained for natural
alignment in Ref. [18]. This would require simple relations
among the parameters of the potential [37,38]. We have
checked that this is not the case. Therefore, the requirement
of being close to alignment simply translates into an
appropriate choice of parameter space.
In spite of some hints [35,36,39–42], no state with m <

125 GeV has been observed. This could simply be because
in this model the hiZZ coupling is for the lighter states
typically below 10% of the SM value and production via
the Bjorken process is suppressed.
In view of these results and the appeal of the Weinberg

potential, it seems important to pursue the searches for a
light scalar, whose coupling to the Z and W is reduced. In
this context, it is important to recall that also branching

FIG. 7. Frequency distribution of the relative strength jP̂3jj
of the h3hjZ couplings, in units of g=ð2 cos θWÞ (along the
y axis) vs hj.

FIG. 8. Scatter plots of the absolute value of the angle α (in units of π=2) of Eq. (4.9), characterizing the CP-odd content of the Yukawa
couplings to ττ̄ for h2 ¼ hSM (left) and h3 ¼ hSM (right).
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ratios would differ from those of the SM Higgs. In
particular, the hj → γγ rate would be reduced, again
because of the reduced hiWW coupling and also modified
by the loop contributions of the charged scalars. This issue
will be discussed elsewhere; the contribution of the charged
states could lead to either destructive or constructive
interference with the W and fermion loops.
In Ref. [28] the same real scalar potential with an

additional complex soft symmetry breaking term is studied
in a region of parameter space such that the vacuum leaves
one of the Z2 symmetries unbroken, i.e., one of the
doublets acquires zero VEV. The additional soft term is
introduced to explicitly break the two Z2 symmetries that
are also broken by the vacuum. In this way it is possible to
have CP violated explicitly by the potential. This frame-
work results in a viable extension of the inert doublet model
[43–45], providing a good dark matter candidate while
having two noninert doublets.
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APPENDIX A: THE MASS-SQUARED MATRICES

In this appendix, we give the mass-squared matrices of
the Weinberg potential.

1. Charged sector

In the charged sector, the elements of the 2 × 2 mass-
squared matrix corresponding to the fields φHB�

2 and φHB�
3

can be written as

ðM2
chÞ11 ¼ −

λ1v2 sin2ð2θ2 − 2θ3Þv22v23
sin 2θ2 sin 2θ3v21w

2

−
	
λ012v

2
2 þ λ013v

2
3


 v2

2w2
; ðA1aÞ

ðM2
chÞ12 ¼ −

λ1vv1v2v3 sinð2θ2 − 2θ3Þ
sin 2θ2 sin 2θ3v21w

2

×
	
v22 sin 2θ2e

2iθ3 þ v23 sin 2θ3e
2iθ2



þ vv1v2v3
2w2

	
λ012 − λ013



; ðA1bÞ

ðM2
chÞ21 ¼ ðM2

chÞ�12; ðA1cÞ

ðM2
chÞ22 ¼ −

λ1
sin 2θ2 sin 2θ3w2

	
2 sin 2θ2 sin 2θ3

× cosð2θ2 − 2θ3Þv22v23 þ sin2 2θ2v42

þ sin2 2θ3v43


−

1

2w2

�ðλ012v23 þ λ013v
2
2Þv21

þ λ023w
4
�
: ðA1dÞ

These are all singular if either θ2 or θ3 vanishes faster
than the other one. The singularities arise due to the
constraints (2.8).
For the rotation to the mass eigenstates hþ1;2 we introduce

a complex matrix U,

hþi ¼ Uijφ
HBþ
jþ1 ; ðA2Þ

with φHBþ
2;3 defined by Eq. (2.16). Explicitly, with

U ¼
�

cos γ sin γeiϕ

− sin γe−iϕ cos γ

�
; ðA3Þ

we have hþ1 ¼ cos γφHBþ
2 þ sin γeiϕφHBþ

3 and hþ2 ¼
− sin γe−iϕφHBþ

2 þ cos γφHBþ
3 .

The masses in the charged sector are thus given entirely
in terms of λ1, λ012, λ

0
13, and λ

0
23, together with the VEVs and

the phases. The unprimed λij do not enter. Furthermore, for
small λ1, either λ012 and/or λ

0
13 and/or λ

0
23 must be negative.

2. Neutral sector

With the Higgs-basis field sequence (2.17) and invoking
Eq. (2.8), we find
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ðM2
neutÞ11 ¼

4λ1v22v
2
3

v2 sin 2θ2 sin 2θ3

�
1 − cosð2θ2 − 2θ3Þ cos 2θ2 cos 2θ3

�
þ 2

v2
�
λ11v41 þ λ22v42 þ λ33v43 þ λ̄12v21v

2
2 þ λ̄13v21v

2
3 þ λ̄23v22v

2
3

�
; ðA4aÞ

ðM2
neutÞ12 ¼

−2λ1v22v23
v2wv1 sin 2θ2 sin 2θ3

�
sin2ð2θ2 − 2θ3Þð2w2 − v2Þ − 2 cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3v21

�
−

v1
v2w

�
2λ11v21w

2 − 2λ22v42 − 2λ33v43 − ðλ̄12v22 þ λ̄13v23Þðv2 − 2w2Þ − 2λ̄23v22v
2
3

�
; ðA4bÞ

ðM2
neutÞ13 ¼

2λ1v2v3
vw sin 2θ2 sin 2θ3

�
v22 sin

2 2θ2 − v23 sin
2 2θ3

�þ v2v3w
vw2

�
−2λ22v22 þ 2λ33v23 − λ̄12v21 þ λ̄13v21 þ λ̄23ðv22 − v23Þ

�
;

ðA4cÞ

ðM2
neutÞ22 ¼

4λ1v22v
2
3

v2w2 sin 2θ2 sin 2θ3

�
v21 cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3 − w2 sin2ð2θ2 − 2θ3Þ

�
þ 2v21
v2w2

�
λ11w4 þ λ22v42 þ λ33v43 − λ̄12v22w

2 − λ̄13v23w
2 þ λ̄23v22v

2
3

�
; ðA4dÞ

ðM2
neutÞ23 ¼

2λ1v2v3
vv1w2 sin 2θ2 sin 2θ3

�
−w2 sinð2θ2 − 2θ3Þðv22 sin 2θ2 cos 2θ3 þ v23 sin 2θ3 cos 2θ2Þ

þ v21ðv22 − v23Þ cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3
�þ v1v2v3

vw2

�
−2λ22v22 þ 2λ33v23 þ ðλ̄12 − λ̄13Þw2 þ λ̄23ðv22 − v23Þ

�
;

ðA4eÞ

ðM2
neutÞ25 ¼

2λ1vv2v3
v1

sinð2θ2 − 2θ3Þ; ðA4fÞ

ðM2
neutÞ33 ¼

−4λ1v22v23
w2

cosð2θ2 − 2θ3Þ þ
2v22v

2
3

w2

�
λ22 þ λ33 − λ̄23

�
; ðA4gÞ

ðM2
neutÞ34 ¼

−2λ1vv2v3
v1

sinð2θ2 − 2θ3Þ; ðA4hÞ

ðM2
neutÞ44 ¼

−2λ1v2v22v23
v21w

2 sin 2θ2 sin 2θ3
sin2ð2θ2 − 2θ3Þ; ðA4iÞ

ðM2
neutÞ45 ¼

−2λ1vv2v3
v1w2 sin 2θ2 sin 2θ3

sinð2θ2 − 2θ3Þ
�
v22 sin 2θ2 cos 2θ3 þ v23 sin 2θ3 cos 2θ2

�
; ðA4jÞ

ðM2
neutÞ55 ¼

−2λ1
w2 sin 2θ2 sin 2θ3

�
2v22v

2
3 cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3 þ v42 sin

2 2θ2 þ v43 sin
2 2θ3

�
; ðA4kÞ

with ðM2
neutÞ14 ¼ ðM2

neutÞ15 ¼ ðM2
neutÞ24 ¼ ðM2

neutÞ35 ¼ 0. Most of these are singular if θ2 or θ3 vanishes faster than the
other one.
It is also instructive to study the determinant,

D5×5 ¼
λ21 sin

2ð2θ2 − 2θ3Þ
v2v41ðv22 þ v23Þ5 sin5 2θ2 sin5 2θ3

Fðθ2; θ3;…Þ; ðA5Þ

with

Fðθ2; θ3;…Þ ¼ 64λ31v
6
2v

10
3 w2sin22θ2sin82θ3F̃2;8 þ λ21v

4
2v

8
3sin

32θ2sin72θ3F̃3;7 þ λ1v22v
6
3sin

42θ2sin62θ3F̃4;6

þ v42v
4
3sin

52θ2sin52θ3F̃5;5 þ fðθ2; v2; λ22; λ̄12Þ ↔ ðθ3; v3; λ33; λ̄13Þg; ðA6Þ
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with F̃mn regular, homogeneous expansions in the λ’s and
powers of the VEVs, as well as sines and cosines of the θ’s,
accompanying the overall factors sinm 2θ2 sinn 2θ3.
Overall, if both θ’s are small, Fðθ2; θ3;…Þ is of order
10 in the θ’s, canceling the singularity of the prefactor of
Eq. (A5), but leaving an overall dependence on the θ’s
given by sin2ð2θ2 − 2θ3Þ.
The determinant of M2

neut has an overall factor of λ21
reflecting the fact that in the absence of the terms in Vph

there would be two massless states, originating from the
breaking of the Uð1Þ ×Uð1Þ symmetry.
For sinð2θ2 − 2θ3Þ ¼ 0 the elements ðM2

neutÞ25 ¼
ðM2

neutÞ34 ¼ ðM2
neutÞ44 ¼ ðM2

neutÞ45 ¼ 0, and the mass-
squared matrix becomes block diagonal. A 3 × 3 block
will account for mixing among ηHB1 , ηHB2 , and ηHB3 , whereas
a 2 × 2 block will describe a massless χHB2 and a massive
χHB3 . This model would preserve CP, as already mentioned
in Sec. II B. However, there is also another way to achieve
factorization, as discussed in Appendix B.

a. Masses of the Uð1Þ × Uð1Þ pseudo-Goldstone bosons

A nonzero λ1 explicitly breaks the Uð1Þ ×Uð1Þ sym-
metry of the potential and turns the two Goldstone bosons
into pseudo-Goldstone bosons. The masses of these
pseudo-Goldstone bosons can be computed to first order
in λ1 by writing the mass matrix in the symmetry basis as

M2
6×6 ¼ M2

6×6





λ1¼0

þ λ1
∂M2

6×6

∂λ1
ðA7Þ

≡M2
ð0Þ þ λ1M2

ð1Þ ðA8Þ

and applying time-independent perturbation theory. The
unperturbed system has a threefold degeneracy correspond-
ing to the Uð1ÞY and Uð1Þ ×Uð1Þ Goldstone bosons.
Hence, when λ1 is turned on, the Oðλ1Þ corrections to the
masses of these states are given by the eigenvalues of the
perturbation matrix in the degenerate subspace spanned by
the three massless states [46],

ðM2
ð1ÞÞij ¼ ni

∂M2

∂λ1
nT
j ; ðA9Þ

where ni (i ¼ 1, 2, 3) are three linearly independent
massless eigenstates of M2

ð0Þ. This matrix has a zero

eigenvalue due to the fact that the Uð1ÞY Goldstone boson
remains massless after λ1 is turned on. The two remaining
eigenvalues yield the masses of the Uð1Þ ×Uð1Þ pseudo-
Goldstone bosons at order Oðλ1Þ,

m2
i ¼

−λ1
v21 sin 2θ2 sin 2θ3

	
v21v

2
2 sin

2ð2θ2Þ

þ v23v
2
2 sin

2ð2θ2 − 2θ3Þ þ v21v
2
3 sin

2ð2θ3Þ � Δ


;

ðA10aÞ

where

Δ2 ¼ �v21ðv22 sin2ð2θ2Þ þ v23 sin
2ð2θ3ÞÞ

þ v22v
2
3 sin

2ð2θ2 − 2θ3Þ
�
2

− 4v21v
2
2v

2
3v

2 sin2ð2θ2Þ sin2ð2θ3Þ
× sin2ð2θ2 − 2θ3Þ: ðA10bÞ

Since all masses squared are linear in the λ’s, these above
expressions are independent of the λ’s defining V0.
It is instructive to compare these values with the simple

model discussed in Appendix B for θ3 ¼ −θ2 and v3 ¼ v2.
In that limit, the above results simplify to

m2
a ¼ 4λ1v22sin

22θ2; m2
b ¼

4λ1v22
v21

v2cos22θ2: ðA11Þ

For a discussion, see Appendix B.

APPENDIX B: A MINIMAL (SIMPLE) MODEL

Inspired by Eq. (2.7) we see that a minimal version of the
model can be constructed by imposing a symmetry under
the interchange

ϕ2 ↔ ϕ3: ðB1Þ

This immediately implies

m22 ¼ m33; λ2 ¼ λ3; ðB2Þ

as well as

λ22 ¼ λ33; λ12 ¼ λ13; λ012 ¼ λ013: ðB3Þ

It follows from the minimization conditions (2.4) and (2.6)
that, while the moduli of the VEVs are the same, we must
have opposite phases,

v2 ¼ v3; θ2 ¼ −θ3: ðB4Þ

Obviously, this simple model conserves CP [47] with CP
defined as
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0
B@

hϕ1i
hϕ2i
hϕ3i

1
CA⟶

CP

0
B@

1 0 0

0 0 1

0 1 0

1
CA
0
B@

hϕ�
1i

hϕ�
2i

hϕ�
3i

1
CA: ðB5Þ

Within this framework, the constraints (2.6) can be
expressed as

λ2 ¼ −2λ1
v22
v21

cosð2θ2Þ: ðB6Þ

1. Charged sector

The mass-squared matrix of the charged sector is found
to be given by

ðM2
chÞ11 ¼ 2λ1

v22
v21

v2 cos2 2θ2 −
1

2
λ012v

2; ðB7aÞ

ðM2
chÞ12 ¼ ðM2

chÞ�21 ¼ −iλ1v22
v
v1

sinð4θ2Þ; ðB7bÞ

ðM2
chÞ22 ¼ 2λ1v22 sin

2 2θ2 −
1

2
λ012v

2
1 − λ023v

2
2: ðB7cÞ

The two masses are determined by a quadratic equation,

m2þ ¼ 1

2

�
a�

ffiffiffi
b

p �
; ðB8Þ

with

a ¼ 2λ1
v22
v21

�
v2 − 2 sin2ð2θ2Þv22

�
− λ012ðv21 þ v22Þ − λ023v

2
2;

ðB9Þ

b ¼ v42
v41

�
4λ21ðv2 − 2 sin2 2θ2v22Þ2 þ 4v21ðλ012 − λ023Þ

×
�
2 sin2 2θ2ðv21 þ v22Þ − v2

�þ ðλ012 − λ023Þ2v41
�
:

ðB10Þ

If we consider the limit λ1 → 0, we find

m2þ →
1

2

�
−λ012ðv21 þ v22 ∓ v22Þ − λ023ðv22 � v22Þ

�
: ðB11Þ

On the other hand, if we make the further assumption
that λ012 ¼ λ023, we find

m2
α ¼ −

1

2
λ012v

2; ðB12aÞ

m2
β ¼ m2

α þ Δm2; ðB12bÞ

Δm2 ¼ 2λ1v22
v21

ðv21 þ 2v22 cos
2 2θ3Þ: ðB12cÞ

If λ1 > 0, we have mβ > mα, otherwise the order is
inverted. We must require λ012 < 0.

2. Neutral sector

In the Higgs basis and invoking Eq. (B6), the 5 × 5
mass-squared matrix takes the form

ðM2
neutÞ11 ¼

2

v2
�
−2λ1v42ð1þ 2 cos2 2θ2Þ þ λ11v41 þ 2λ22v42

þ 2λ̄12v21v
2
2 þ λ̄23v42

�
; ðB13aÞ

ðM2
neutÞ12 ¼

2
ffiffiffi
2

p
λ1v32

v1v2
ð−v21 þ 4v22 cos

2 2θ2Þ

þ
ffiffiffi
2

p
v1v2
v2

�
−2λ11v21 þ 2λ22v22

þ λ̄12ðv21 − 2v22Þ þ λ̄23v22
�
; ðB13bÞ

ðM2
neutÞ22 ¼

v22
v2
�
2λ1½−v21 þ 2ðv21 þ 4v22Þ cos2 2θ2�

þ ð4λ11 þ 2λ22 − 4λ̄12 þ λ̄23Þv21
�
; ðB13cÞ

ðM2
neutÞ25 ¼ 2λ1v

v22
v1

sin 4θ2; ðB13dÞ

ðM2
neutÞ33 ¼ 2λ1v22ð1 − 2 cos2 2θ2Þ þ ð2λ22 − λ̄23Þv22;

ðB13eÞ

ðM2
neutÞ34 ¼ −2λ1v

v22
v1

sin 4θ2; ðB13fÞ

ðM2
neutÞ44 ¼ 4λ1v2

v22
v21

cos2 2θ2; ðB13gÞ

ðM2
neutÞ55 ¼ 4λ1v22 sin

2 2θ2; ðB13hÞ

the remaining elements being zero.

3. Factorization

Since the mass-squared matrix for the neutral sector,
Eq. (B13), becomes block diagonal, its determinant fac-
torizes. One factor comes from the fηHB1 ; ηHB2 ; χHB3 g sector,

ðM2Þneut;3×3 ¼

0
B@

ðM2
neutÞ11 ðM2

neutÞ12 ðM2
neutÞ15

ðM2
neutÞ21 ðM2

neutÞ22 ðM2
neutÞ25

ðM2
neutÞ51 ðM2

neutÞ52 ðM2
neutÞ55

1
CA;

ðB14Þ
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and the other comes from the fηHB3 ; χHB2 g sector,

ðM2Þneut;2×2 ¼
� ðM2

neutÞ33 ðM2
neutÞ34

ðM2
neutÞ43 ðM2

neutÞ44

�
: ðB15Þ

The two determinants are given by

D3×3 ¼
8λ1v42 sin

2ð2θ2Þ
v21

�
8λ21v

4
2 cos

2 2θ2

− 2λ1
�
λ11v41 þ ð4λ22 þ 2λ̄23Þv42 cos2 2θ2

�
þ v41ð2λ11λ22 þ λ11λ̄23 − λ̄212Þ

�
; ðB16Þ

and

D2×2 ¼
4λ1v2v42

v21
ð−2λ1 þ 2λ22 − λ̄23Þ cos2ð2θ2Þ: ðB17Þ

Both of these vanish in the limit of λi → 0, i.e., when
Vph → 0. Furthermore, both determinants are proportional
to v42, so if the VEVs of ϕ2 and ϕ3 were to vanish, two
masses in each sector would vanish. This feature is
reflected in the scans of the full model shown in Figs. 3
and 6. There are no points at the origin in the v2 expðiθ2Þ or
v3 expðiθ3Þ planes.

4. CP conservation

Inspection of the gauge couplings discussed in Sec. III,
in particular the Zhihj couplings given by Eq. (3.5),
shows that P12 ¼ P15 ¼ P25 ¼ 0 and that P34 ¼ 0, so
states within each set have the same CP. Furthermore,
the nonvanishing ZZh1, ZZh2, and ZZh5 couplings and the
vanishing of the ZZh3 and ZZh4 couplings confirm the
following identification:

ηHB1 ; ηHB2 ; χHB3 ðnot ηHB3 Þ mix to form h1; h2; h5; CP even;

ðB18Þ

χHB2 ; ηHB3 ðnot χHB3 Þ mix to form h3; h4; CP odd;

ðB19Þ

and, as stated above, CP is conserved in this model.11

5. The two pseudo-Goldstone bosons

In Appendix 2 A a we discussed the masses of the
pseudo-Goldstone bosons to first order in λ1. For the
present simplified model, with v3 ¼ v2 and θ3 ¼ −θ2,
the results for those masses linear in λ1 simplify to

m2
i ¼

λ1
v21 sin

2 2θ2

�
2v21v

2
2 sin

2 2θ2

þ 4v42 sin
2 2θ2 cos2 2θ2 � Δ

�
; ðB20aÞ

Δ2 ¼ 4v22 sin
2 2θ2

�
v21 − 2ðv2 − v22Þ cos2 2θ2

�
2: ðB20bÞ

We find the two values

m2
a ¼ 4λ1v22sin

22θ2; m2
b ¼

4λ1v22
v21

v2cos22θ2: ðB21Þ

These mass values are seen to be contained as factors in
the above determinants D3×3 and D2×2, with m2

a being a
factor of D3×3 and m2

b a factor of D2×2. Referring back to
the CP properties of the 3 × 3 and the 2 × 2 blocks, we
conclude that in the limit λ1 → 0, then ha (mass ma) would
be even under CP and hb (mass mb) would be odd. They
become degenerate for

j tan 2θ2j ¼
v
v1

; ðB22Þ

which is necessarily larger than unity. It follows from the
discussion in the previous subsection that such degenerate
states would have different CP, as they must.
Finally, in the limit λ1 → 0 we find compact expressions

for the non-pseudo-Goldstone masses: From the 2 × 2
block,

m2
c ¼

	
2λ11 − λ̄23



v22; ðB23Þ

and from the 3 × 3 block,

m2
d;e ¼

α� β

2
; ðB24Þ

where

α ¼ v22
	
2λ22 þ λ̄23


þ 2λ11v21; ðB25Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v22v

2
1ð2λ̄212 − λ11ð2λ22 þ λ̄23ÞÞ þ v42ð2λ22 þ λ̄23Þ2 þ 4λ211v

4
1

q
: ðB26Þ

11However, because of the mixing between η and χ scalar fields, this model becomes CP violating when coupled to fermions.
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1 Introduction

The possibility for CP -violation is arguably one of the most attractive features of Multi-Higgs-
Doublets models (NHDM), enabling them to accommodate baryogenesis [1, 2] and contributing
to much of their rich phenomenology [3, 4]. Yet, as with other symmetries of NHDMs, CP
symmetry can be apparent in one doublet basis and completely obfuscated in another. Indeed,
any basis transformation followed by the canonical CP transformation Φi(x⃗, t)→ Φ∗i (−x⃗, t)
can be a valid CP symmetry. That is, a general CP transformation takes the form

CP : Φi(x⃗, t)→ VijΦ∗j (−x⃗, t), (1.1)

for some matrix V ∈ U(N) [5]. In addition, a CP symmetry need not be of order 2, with
CP 2 being the identity, but may be of higher order p = 2q, with p > 2 the smallest integer
such that CP p is the identity instead. In contrast to higher-order CP symmetries, CP2 is
equivalent to the existence of a basis where all the parameters are real [6]. In other words,
CP2 is equivalent to the canonical CP in some basis. NHDMs with CPs of higher order than
2 often generate CP2 as an accidental symmetry, and CP2 was long considered to be the only
CP . However, while in the 2HDM CP2 is the only possible CP , a 3HDM with an order-4 CP
symmetry (CP4) and no other symmetries was identified and studied in [7, 8]. Even higher
order CP s than CP4, with no accidental symmetries, were constructed and examined in [9].

Thus, establishing whether a particular potential breaks CP is challenging but crucial
for conducting a phenomenological analysis. For the general 2HDM, necessary and sufficient
conditions for CP symmetry were first derived in terms of basis-invariant quantities in [6]
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and later using basis-covariant quantities in the bilinear formalism [10, 11]. Methods based
on basis-covariant objects proved to be quite powerful and have since been succesfully applied
to the 3HDM to detect CP2, CP4 as well as other symmetries [12–15]. In particular, within
this framework, a complete solution for detecting CP2 for N = 3 and a discussion of the cases
N > 3 was given in [12]. In this work, we show that this idea, formulated in the language
of representation theory, can be extended to derive necessary and sufficient conditions for
explicit CP2 conservation for arbitrary N . While the conditions themselves can be simply
formulated for all N , implementing them in practice is not trivial. Making extensive use of
Lie algebra and representation theory, we devise an efficient algorithm for detecting whether
an arbitrary potential has a CP2 symmetry. Thus we are able to check whether a real basis
exists, although the possibility of spontaneous CP violation is not addressed in this work.

Throughout this paper we allow N to be arbitrarily large, since our method in principle
applies to any number of doublets, although its computational cost increases with N . While
the 2HDM and 3HDM are currently the most relevant for phenomenology, models with
more doublets have received some attention. 4HDMs were studied in e.g. [16, 17] and [18].
In the latter article, one doublet couples to quarks and three doublets couple to charged
leptons, allowing for flavor changing neutral currents in the leptonic sector, but not in
the quark sector. 5HDMs in the context of higher order CP s were scrutinized in [9]. A
6HDM for Dark Matter was examined in [19], and Grand Unified Theories with eight and
nine Higgs doublets were studied in [20] and [21], respectively. Moreover, in the “Private
Higgs” extension of the SM each charged fermion acquire mass from its own Higgs doublet,
through O(1) Yukawa couplings, and is hence another example of a model with N = 9 Higgs
doublets [22, 23]. The analysis of such models may be facilitated by the general algorithm
for CP2 detection presented here.

The article is structured as follows: section 2 contains a presentation of the covariant
framework for identifying symmetries, which is then applied for deriving a characterization of
CP2 symmetry, as well as a reminder of Lie algebra theory and proofs of some representation
theoretical results for the orthogonal algebra so(N). Based on the characterization we derive,
algorithms for checking the existence of a CP2 symmetry are given in section 3. In section 4,
the algorithms are applied to concrete potentials to check for CP2. Finally, in section 5
we summarize our results and make final remarks. Additional mathematical results and
numerical values for a 7HDM example are found in appendix A and B.

2 Formalism

We write the potential for N Higgs SU(2) doublets Φi in the bilinear formalism [24]

V =M0K0 +MaKa + Λ0K
2
0 + LaK0Ka + ΛabKaKb (2.1)

where the bilinears Kα, α = 0, . . . , N2 − 1 are given in terms of the generalized Gell-Mann
matrices λa

K0 = Φ†iΦi , Ka = Φ†i (λa)ijΦj . (2.2)
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Writing the potential in this manner is advantageous because the bilinears have simple
transformation properties under a change of basis

Φi → UijΦj , U ∈ SU(N), (2.3)

with K0 being a singlet while Ka transforms according to the adjoint representation of SU(N)

K0 → K0 , Ka → Rab(U)Kb (2.4)

where
Rab(U) = 1

2Tr(U †λaUλb). (2.5)

Since the adjoint representation is the linear action of SU(N) on the vector space given by
its own Lie algebra, all the adjoint vectors which characterize the potential live in su(N)
which is then the natural setting to derive properties of the potential.

Now, to keep the potential V invariant under the change of basis (2.3), the matrix Λ
has to transform as

Λ→ R(U)ΛRT (U). (2.6)

The generalized Gell-Mann matrices form a basis for the Lie algebra su(N) and satisfy the
commutation relations1

[λa, λb] = 2ifabcλc. (2.7)

For convenience, we order the generalized Gell-Mann matrices as in [25], where the anti-
symmetric matrices appear first. That is

λTa = −λa for a = 1, . . . , k ≡ N(N − 1)
2 . (2.8)

As we will see in section 2.1, the fact that this subset is equivalent to the defining representation
of so(N) can be used to derive simple necessary and sufficient conditions for CP2 symmetry
in NHDMs.

2.1 Covariant framework for detecting CP2

Let us now describe the setting for characterizing CP2 using relations among basis-covariant
objects. Our method relies on viewing the adjoint vectors which characterize the potential
as elements of su(N), thanks to the Lie algebra isomorphism between su(N) and RN2−1

equipped with the F-product from [15]

F : RN2−1 × RN2−1 → RN2−1 (2.9)

(a, b) 7→ fijkaibj ≡ F
(a,b)
k (2.10)

1In this basis the Killing form is proportional to the identity hence we do not distinguish between upper and
lower Lie algebra indices. Moreover, we apply the physicist’s definition of a Lie algebra, for mathematicians
the mentioned basis would be {iλj}N

2−1
j=1 .
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where fijk are the structure constants of su(N) in the Gell-Mann basis. The isomorphism
is then given by the map

Ω : RN2−1 → su(N) (2.11)
a 7→ aiλi. (2.12)

In what follows, we will denote vectors of RN2−1 with lower case letters, and the associated
su(N) matrices by uppercase letters, e.g. A ≡ Ω(a) = aiλi. By definition, the generalized
Gell-Mann matrices correspond via Ω to the canonical basis of RN2−1 i.e.

Ω(ea) = λa. (2.13)

That Ω is an isomorphism between the two algebras is easily shown by noticing that

F (a,b) = c ⇐⇒ [A,B] = 2iC. (2.14)

Using this isomorphism we can decompose RN2−1 into two subspaces

RN2−1 = EA ⊕ ES , (2.15)

with EA and ES corresponding respectively to the antisymmetric and symmetric matrices
in su(N). It is important to note that EA has a Lie algebra structure since it corresponds
to the so(N) subalgebra while ES is only a vector space.

Higgs basis transformations (2.3) act on su(N) as inner automorphisms

X → X ′ = UXU † for X ∈ su(N) (2.16)

and hence preserve commutation relations. It follows from (2.14) that F-product relations
are also preserved i.e.

F (a,b) = c ⇐⇒ F (a′,b′) = c′, (2.17)

where x′ = R(U)x, cf. (2.5). This is simply the statement that F-products relations are
vector relations in the adjoint representation of su(N). A consequence of (2.17) is that if a
subspace V ⊂ RN2−1 spanned by vectors {va}na=1 forms a subalgebra in the sense

F (va,vb) ∈ V, ∀ a, b ∈ {1, . . . , n} (2.18)

then the transformed basis {v′a = R(U)va}na=1 forms the same subalgebra. Since the NHDM
potential is completely determined by RN2−1 vectors, namely L, M and the eigenvectors
of Λ, and su(N) invariants, any intrinsic property of an arbitrary potential which can be
formulated as a set of characteristic vectors spanning a Lie subalgebra, can be verified in any
basis. We will now show that CP2 symmetry can be characterized in this way.

2.1.1 Necessary and sufficient conditions for CP2 symmetry

Theorem 1. An NHDM potential admits a CP2 symmetry if and only if the following
conditions hold

– 4 –



J
H
E
P
0
5
(
2
0
2
4
)
2
6
0

• k = N(N−1)
2 of Λ’s eigenvectors, {va}ka=1, form a basis for the defining representation

of so(N)

• L · va =M · va = 0, ∀a ∈ {1, . . . , k}.
Proof. Suppose a potential (2.1) has a CP2 symmetry, then there exists a basis where all
the coefficients are real meaning that

Λ =
(
BN 0
0 AN

)
(2.19)

is block diagonal with BN and AN arbitrary symmetric matrices of dimension k × k and
N2 − 1− k ×N2 − 1− k, respectively. In this basis, it is evident that k of Λ’s eigenvectors
span EA, and therefore the image of this set by the isomorphism (2.11) is a basis for the
defining representation of so(N) = Span(λ1, . . . , λk). Denote this subset of eigenvectors by
{ta}ka=1, it follows that

F (ta,tb) ∈ EA (2.20)
i.e. this subset of eigenvectors closes under the F-product, a property which can be observed
in any Higgs basis since F-product relations are basis-independent. In addition, the existence
of a real basis implies that the adjoint vectors L and M of the potential are in ES . Thus, the
following basis-invariant conditions

L · ta =M · ta = 0, ∀a ∈ {1, . . . , k}, (2.21)

must hold. We will sometimes refer to this condition concisely as LM -orthogonality.
Conversely, assume the two conditions of the Theorem hold. Indeed, by assumption the

representation given by {va}ka=1 must be equivalent (i.e. isomorphic) to the defining represen-
tation generated by the first k Gell-Mann matrices. Since an equivalence of two hermitian
representations with the same underlying vector space is a similarity transformation [26]
which, as shown in Proposition 3, can always be chosen to be unitary, we have

UVaU
† ∈ Span(λ1, . . . , λk), ∀a ∈ {1, . . . , k}. (2.22)

The unitary matrix U above is a Higgs basis transformation which brings Λ to the block
diagonal form (2.19), i.e. it is a transformation to a real basis. To see this note that (2.22)
when written in terms of adjoint vectors reads

R(U)va ∈ EA, ∀a ∈ {1, . . . , k} (2.23)

which implies these k eigenvectors span EA and that the remaining ones {R(U)va}N
2−1

a=k+1
span ES . Hence writing Λ in terms of its eigenvectors va and eigenvalues αa using its spectral
decomposition it follows that

R(U)ΛR(U)T =
N2−1∑

i=a
αaR(U)vavTa R(U)T (2.24)

is block diagonal as in (2.19) and hence does not generate complex terms in the potential.
Moreover, LM -orthogonality in that basis implies that L and M lie in ES meaning that no
complex terms come from these parts of the potential either. Therefore, the two conditions
of the Theorem lead to the existence of a real basis.
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Thus the problem of detecting whether a potential has a CP2 symmetry is reduced
to determining whether Λ has k LM -orthogonal eigenvectors which form a basis for the
defining representation of so(N).

2.2 Identifying Lie algebras and representations

Applying the characterization of CP2 derived in the previous section requires identifying
Lie algebras and their representations. Therefore, for the purpose of making the present
paper self-contained, we now give a brief reminder of Lie algebra theory focusing on the
classification of semisimple Lie algebras and their representations. This presentation is not
meant to be exhaustive but simply to introduce characteristics of Lie algebras and how they
can be computed in practice. For more complete expositions of Lie algebra and representation
theory see e.g. [26–28].

Given a Lie algebra g, a Cartan subalgebra h ⊂ g is a maximal commuting subalgebra
i.e. a subalgebra of maximal dimension such that

[X,Y ] = 0, ∀X,Y ∈ h. (2.25)

The dimension of h is called the rank of g and is an important number characterizing a
Lie algebra. Denote dim(g) ≡ d and rank(g) ≡ r and let {Hi}ri=1 be a basis for a Cartan
subalgebra. By construction, the adjoint matrices adHi can be simultaneously diagonalized
and will have r common nullvectors hi since

adHihj = 0 ⇐⇒ [Hi, Hj ] = 0. (2.26)

The d− r remaining eigenvectors eα are called the roots of the algebra and satisfy

adHieα = αieα ⇐⇒ [Hi, Eα] = αiEα (2.27)

while the d − r eigenvalue tuples α = (α1, . . . , αr), thought of as vectors of Rr, form the
so-called root system of g. It was shown by Dynkin that semisimple Lie algebras can be
classified according to their root system [29].

Thus an unknown semisimple Lie algebra can be identified if one can compute a Cartan
subalgebra for it. This can be done by calculating the nullspace of an adjoint matrix adX
where X is, by definition, any regular element of g [30, 31]. For su(N) and its subalgebras,2
an element is regular if all its eigenvalues are distinct. Thus a Cartan subalgebra can be
computed from a generic element e.g. randomly sampled.

The dimension of the nullspace of adX then gives the rank of g, and the nullvectors hi
provide a basis Hi for a Cartan subalgebra. One can then simultaneously diagonalize the
matrices adHi and find the root system. Figure 1 shows how so(7) and sp(6), which have
the same dimension and rank, differ by their root system.

Once the root system R has been found and an ordered set of positive simple roots
{β1, . . . , βr} ⊂ R has been chosen [26], the Lie algebra representation at hand can be identified
by computing its highest weight Υ which, for an n-dimensional irreducible representation, is a
vector of Rr characterizing that representation [27]. In the case of a reducible representation

2If g′ ⊂ g and x is regular in g then x is regular in g′ [30].
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(a) so(7) (b) sp(6)

Figure 1. Root systems of so(7) and sp(6) with long (short) roots shown in red (blue). The root
system distinguishes these two 21-dimensional rank-3 algebras.

there will be one highest weight per irreducible component. To each highest weight corresponds
a simultaneous nullvector v0 of the positive simple roots

Eβiv0 ≡ 0 , ∀i ∈ {1, . . . , r}. (2.28)

The components of the highest weight Υ = (a1, . . . , ar) in the basis of so-called fundamental
weights {ωi}ri=1 [27], sometimes called Dynkin labels, are the smallest integers satisfying

E1+ai
−βi v0 = 0 , i ∈ {1, . . . , r}. (2.29)

The dimension of an irreducible representation ΓΥ with highest weight Υ is then given
by the Weyl dimension formula [27, 32]

dim(ΓΥ) =
∏

α∈R+

(α, ρ+Υ)
(α, ρ) , (2.30)

where R+ ⊂ R is the set of positive roots, ρ is half the sum of the positive roots and (, ) is the
Euclidean inner product. The irreducible representations where one Dynkin label equals one
and all other Dynkin labels are zero are called fundamental representations. In particular, the
fundamental representation (1, 0, . . . , 0) usually corresponds to the defining representation.

2.2.1 so(N) subalgebras of su(N)

We now prove results about so(N) subalgebras of su(N) that will enable us to devise an
algorithm for identifying the defining representation of so(N) which, as shown in Theorem 1,
characterizes CP2 symmetry in the NHDM potential.
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It can be shown using eq. (2.30) that the fundamental representations of the odd
orthogonal Lie algebras Br = so(2r + 1)C with r ≥ 2, have the following dimensions [27]:

dim(Γωk) =
(
2r + 1
k

)
, k < r

dim(Γωr) = 2r. (2.31)

On the other hand, for the even orthogonal algebras Dr = so(2r)C with r ≥ 4, the fundamental
representations have dimensions given by [27]

dim(Γωk) =
(
2r
k

)
, k ≤ r − 2

dim(Γωr−1) = dim(Γωr) = 2r−1. (2.32)

Proposition 1. If N ≥ 3 and N ̸= 4, 8, the defining representation N is the only irreducible
representation of so(N) of dimension N , up to equivalence of representations.

Proof. We will here consider the complexification of so(N), so(N)C, but there is a bijection
ψ between the complex representations of the real and the complexified Lie algebra, with
ψ(Π)(X + iY ) = Π(X) + iΠ(Y ), with Π a complex representation of the real Lie algebra, and
X and Y elements of the real Lie algebra. Moreover, ψ(Π) is an irreducible representation of
the complexified algebra if and only if Π is an irreducible representation of the real algebra [33].

The non-trivial representations with the smallest dimensions are the fundamental repre-
sentations Γωi , where ωi is a fundamental weight [27]. Recalling that these representations
have one Dynkin label being 1 and the others 0, this follows from the Weyl dimension for-
mula (2.30) and the fact that the dimension of an irreducible representation strictly increases
if the any of the Dynkin labels are increased:

dim(Γ(a1,...,ai,...,ar)) < dim(Γ(a1,...,ai+1,...,ar)), (2.33)

where Γ(a1,...,ar) is the irreducible representation with Dynkin labels (a1, . . . , ar), that is,
highest weight Υ = a1ω1 + . . .+arωr. Indeed, since the highest weight Υ is always an integral
dominant element, meaning (Υ, α) ≥ 0 for each root α ∈ R+, (2.30) yields the inequality
in (2.33). This inequality is strict since the positive roots span all Rr, and hence for all
fundamental weights ωi there exists a positive root α such that (α, ωi) > 0.

For so(2r + 1)C with r ≥ 2, dim(Γω1) = 2r + 1 < dim(Γωk) for r > 2 and 1 < k ≤ r,
cf. (2.31). For r = 2, dim(Γω2) = 4, but the defining representation Γω1 is still the unique
irreducible representation of dimension 5, since dim(Γ2ω2) = 10 and dim(Γ(ω1+ω2)) = 16,
according to LieART [32], where the latter representations correspond to Dynkin labels (0, 2)
and (1, 1), respectively. Since the dimension increases strictly with increasing Dynkin labels,
cf. (2.33), there are no representations with the same dimension as the defining representation.

In the case so(2r)C with r ≥ 4, the dimension of the defining representation, dim(Γω1) =
2r < Γωk for 1 < k ≤ r − 2 by (2.32), while for the cases k > r − 2, dim(Γω1) = 2r < 2r−1

when r > 4, so the defining representation has the uniquely least dimension among the
fundamental representations, for r > 4. And again, due to (2.33), the defining representation
of so(2r)C becomes the unique irreducible representation with dimension 2r for r > 4. Note
that for r = 4 (i.e. N = 8), (2.32) gives dim(Γω1) =dim(Γω3) = dim(Γω4) = 8, but this is one
of the two cases the Proposition is not valid.
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For the remaining values of N , i.e. N = 3, 6, we have Lie algebra isomorphisms between
so(N)C and Lie algebras with root system Ar. The Lie algebra so(3)C ∼= sl(2)C = A1 has
exactly one irreducible representation of dimension 3 (this representation does not correspond
to a fundamental weight). Finally, so(6)C ∼= sl(4)C = A3 has exactly one 6-dimensional
representation, Γω2 .

The defining representation of so(2) is not irreducible over C and is hence not included
in this Proposition.

Both representations and subalgebras of Lie algebras are defined in terms of Lie algebra
homomorphisms. The only difference between the two concepts is that a Lie subalgebra always
corresponds to an injective (1-1) homomorphism with image in the algebra to which it is a
subalgebra, while no such restrictions apply to a representation in general. A subalgebra so(N)
of su(N) is then the same as a faithful representation of so(N) with image in su(N). We will by
this apply Proposition 1, which is about representations, to prove a result which describes all
possible so(N) subalgebras of su(N), and that is helpful to detect CP2 symmetry for any N :

Proposition 2. The defining representation N of so(N) is the only so(N) subalgebra of
su(N) up to equivalence (i.e. conjugation) for N ≥ 3, with the following exceptions:

N = 3: 2 + 1

N = 4: 2 + 2′

N = 5: 4 + 1

N = 6: 4 + 1 + 1 and 4̄ + 1 + 1

N = 8: 8c and 8s

Proof. All subalgebras so(N) of su(N) correspond to a faithful sum of irreducible representa-
tions, where the dimensions of the representations sum up to N . By the discussion of the
possible dimensions of irreducible representations of so(N) in the proof of Proposition 1, the
defining representation N of so(N) is the only irreducible representation of dimension ≤ N

for N ≥ 9.
In the case N = 8, the dimension formulas (2.32) show there are two additional 8d

irreducible representations. Both of these are faithful, and hence subalgebras, since so(8)
is simple.

In the case N = 7 the defining representation is the unique non-trivial representation of
lowest dimension, as given by eqs. (2.31) and (2.33).

For N = 6, so(6) ∼= su(4) has a 4d irreducible representation 4, which also has an inequiv-
alent conjugate representation 4̄. These two inequivalent 4d representations will generate two
6d representations, as displayed in the Proposition. The latter are also inequivalent, because
the decomposition into a direct sum of irreducible representations is essentially unique (up
to a mixing of equivalent summands), since the “isotypic” decomposition is unique [34].
LieART [32] can be applied to check that there are no other irreducible representations of
so(6) of dimension less than 6.
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For N = 5 there is also a 4 since so(5)C ∼= sp(4)C, and hence there exists a corresponding
4d irreducible representation of so(5)R due to the 1-1 correspondence between complex
representations of real and complex Lie algebras, even though so(5)R ≇ sp(4)R ∼= so(2, 3).

Moreover, for so(3) ∼= su(2) and so(4) ∼= su(2)⊕ su(2) we have a 3d representation and
a 4d representation, respectively, built from the 2 ∼= 2̄ of su(2). The algebra so(4) has two
inequivalent, irreducible but unfaithful 2d representations, which we will denote 2 and 2′. One
of these representations maps the first semisimple component of so(4) to the Pauli matrices,
while the other component is mapped to zero, and vice versa for the other representation.
Then 2 + 2′ is a reducible but faithful 4d representation of so(4), and hence corresponds to a
so(4) subalgebra of su(4). Representations of so(4) like 3 + 1 and 3′ + 1 are not faithful, and
do hence not yield so(4) subalgebras. So 2 + 2′ is the only possible subalgebra for N = 4, in
addition to the defining representation 4.

These are the only alternative N -dimensional faithful representations for these algebras
and hence the only alternative so(N) subalgebras in su(N). Their existence is due to the
exceptional isomorphisms among the low-rank simple Lie algebras and in the very special
case of so(8), the high symmetry of the D4 Dynkin diagram [28].

Finally, all these representations of the compact Lie algebra so(N) may be written by
hermitian matrices [35], and will hence exist in su(N), just like any representation of a
compact Lie group is equivalent to a unitary representation.

The “exceptional” subalgebras of Proposition 2 are consistent with the low N subalgebra
tables of [32] and [36]. Ref. [36] lists complex subalgebras of complex, simple algebras, but
for su(N), every semisimple complex subalgebra of the complexified algebra su(N)C will
correspond to a semisimple real subalgebra of the compact, real algebra su(N), and vice
versa. The latter direction holds for all algebras, while compact su(N) have real semisimple
subalgebras in 1-1 correspondence with the semisimple complex subalgebras of su(N)C. The
reason is a complex subalgebra hC ⊂ su(N)C also is a faithful, complex representation of
the subalgebra. And since there is a 1-1 correspondence between complex representations
of real and complex variants of the algebras, there will also be a corresponding complex
representation of the real, compact form h of hC. This representation will exist in the real
algebra su(N), since every representation of a compact algebra is equivalent with a Hermitian
representation [35], i.e. it is found among the Hermitian matrices of su(N).

3 Algorithms

We now present an algorithm which implements the necessary and sufficient condition of
Theorem 1, in order to determine if an arbitrary potential has a CP2 symmetry. The
algorithm works in two steps: first identifying the eigenvectors of Λ which are orthogonal
to both L and M , and then searching for a set of eigenvectors that generates the defining
representation of so(N).

3.1 Finding all LM-orthogonal eigenvectors

It is advantageous to start by checking the orthogonality conditions (2.21) first since that
will reduce the number of candidates to be considered when searching for the defining
representation of so(N) among the eigenvectors of Λ. These orthogonality conditions are
straightforward to check, but care must be taken when there are eigenvalue subspaces of
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1 Given an NHDM potential, compute the N2 − 1 eigenvectors of Λ

2 Initialize B, a maximal set of LM -orthogonal eigenvectors

3 For each eigenvalue subspace Wλ

• Solve
{
M ·X = 0
L ·X = 0 for X ∈Wλ

• Add an orthonormal basis for the space of solutions to B

4 Return B

Algorithm 1. Identifying LM -orthogonal eigenvectors.

dimension larger than 1. Indeed, when this is the case, it may be that none of the degenerate
eigenvectors are orthogonal to both L and M , yet some linear combinations are. Thus the
conditions should be checked in an appropriate eigenvector basis where for each eigenvalue
subspace Wλ, corresponding to an eigenvalue λ, all the independent linear combinations
orthogonal to L and M have been extracted. A practical procedure for achieving this is
given in Algorithm 1.

3.2 Detecting the defining representation of so(N) in su(N)

In this section we show an efficient algorithm for determining whether a set of eigenvectors
contains a subset which forms a basis for the defining representation of so(N).

The strategy is to first determine if a subset of k eigenvectors of Λ closes under the
F-product i.e. forms a k-dimensional subalgebra. If such a subalgebra exists, we must verify
whether it is the so(N) algebra or some other k-dimensional subalgebra, since e.g. both
so(5) and su(3) ⊕ u(1) ⊕ u(1) are 10-dimensional subalgebras of su(5). For even N = 2r,
computing the rank of the unknown algebra using the method described in 2.2 is enough to
unambiguously identify so(2r), as it is the only3 subalgebra of su(2r) with dimension k and
rank r. For odd N = 2r + 1, su(2r + 1) always has, in addition to so(2r + 1), at least an
sp(2r) subalgebra which has the same dimension and rank. Thus, beyond r = 1 and r = 2
where one has the isomorphisms so(3) ∼= sp(2) and so(5) ∼= sp(4), the root system of the
unknown algebra must be computed in order to establish that it is so(2r + 1).

Having identified an so(N) subalgebra, it remains to check whether it corresponds to
the defining representation. As shown in Proposition 2, unless N = 3, 4, 5, 6, 8 the defining
representation is the only so(N) subalgebra in su(N) and we are done. For the remaining
special values, the representation must be identified by computing its highest weights.

The complete procedure for arbitrary N is given in Algorithm 2.

3.2.1 Testing for a subalgebra
In order to implement Algorithm 2, one must be able to detect whether a subset of vectors
forms a basis for a subalgebra, which can be done by considering the structure constants.

3We have checked this up to N = 22 (rank 11) by exhausting all the possible semisimple Lie algebras of
rank r and dimension r(2r − 1) and checking against the su(N) subalgebra tables of [32]. For N ≥ 24, there
may be subalgebras of same dimension and rank as so(N) and one has to look at the root systems.
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1 Input a set of orthonormal eigenvectors.

2 If there exists a subset of k eigenvectors {va} forming a basis for a subalgebra
g ⊂ su(N) (see 3.2.1), proceed. Else, return False.

3 Compute r ≡ Rank(g) (see 2.2).

• If N is odd and r = N−1
2 , proceed.

• If N is even and r = N
2 , go to 5 if r ≤ 11, else proceed.

• Else return False.

4 If the root system of g is that of so(N) (see 2.2), proceed. Else, return False.

5 If N ̸= 3, 4, 5, 6, 8, return True. Else, compute the highest weights of the
N -dimensional representation of so(N).

6 If the highest weight is that of the defining representation (see 2.2), return True.
Else return False.

Algorithm 2. Checking if eigenvectors generate the defining representation of so(N).

Let {vi}N
2−1

i=1 be an orthonormal set of eigenvectors of the real symmetric matrix Λ, the
structure constants in that basis of su(N) are given by

Zijk ≡ F (vi,vj) · vk =
−i
4 tr

(
[Vi, Vj ]Vk

)
, (3.1)

and the closure of a subalgebra generated by a subset {va}a∈I , I ⊂ {1, . . . , N2−1} means that

Zabc = 0 ∀a, b ∈ I, c /∈ I. (3.2)

The presence of such a pattern in the structure constants is typically easy to detect, except in
the isolated cases where the structure constants array Z is sparse. This happens for instance
when the matrix Λ is exactly diagonal in some basis in which case we have Zijk = fijk and it
becomes difficult to identify the pattern (3.2) among the many zeroes of Z, without resorting
to brute-force checking all the possible subsets of eigenvectors. In the context of a uniform
numerical scan this is not an issue, since parameter points corresponding to exactly diagonal
Λ matrices are a measure zero parameter space subset, and hence in practice are almost
never sampled. In a more general setting, one can deduce from the sparsity of Z that the
potential takes a very simple form in some basis, and thus is likely to have large symmetries.
A case-by-case analysis may be necessary to identify these symmetries when the number of
doublets is too large to check for the pattern (3.2) using brute-force.

3.3 Numerical considerations
Some comments about the practical implementation of CP2 detection by means of Algo-
rithms 1 and 2 are in order. First, all the steps in these algorithms are linear algebra
computations which can, in principle, be carried out analytically. However, a complete
analytic treatment would require very simple expressions for the eigenvectors of Λ which is un-
likely to be the case for non-trivial potentials. Thus, in practice, a numerical implementation
of the algorithms is most relevant.
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1 Let B be the result of Algorithm 1. If B contains less than k eigenvectors, return
False. Otherwise proceed.

2 If Algorithm 2 applied to B returns True then return True. Else return False.

Algorithm 3. Detecting CP2 symmetry.

Secondly, it is often the case (e.g. in a uniform parameter scan) that a symmetry cannot
truly be exact. This can be due to the symmetric subset of the parameter space having
measure zero, or simply finite numerical precision. Either way, an appropriate numerical
tolerance has to be defined such that parameter points which are sufficiently close to exact
symmetry are considered symmetric. We want to emphasize that Algorithms 1 and 2 can
be implemented with such a tolerance in order to detect parameter points close to exact
CP2 symmetry. Indeed, if the tolerance is encoded by a small number ϵ, then it suffices to
neglect all numbers smaller than ϵ in the numerical computations.

Lastly, even though large values of N have limited practical applications to e.g. phe-
nomenology, one might wonder about the computational cost of Algorithm 2 and how it
scales with N . The most expensive step is checking for a subalgebra since that requires the
computation of the structure constants (3.1)4 for which the required number of operations
scales as N12. While the computation time increases fast, the presence or absence of CP2
can be established almost instantaneously for N = 3 and N = 4 doublets which are, arguably,
the most important use cases.

4 Examples

We now illustrate how our CP2 detection method, summarized in Algorithm 3, can be
applied concretely to determine whether a particular instance of a NHDM potential has
a CP2 symmetry.

4.1 N = 3 : the Ivanov-Silva potential

The Ivanov-Silva potential is an example of a model with a CP4 symmetry but no CP2
symmetry, and hence a CP -conserving potential without a real basis [8]. Consider a particular
numerical instance of this potential in a basis where the existence of neither a CP2 or CP4
symmetry is obvious, given by the following parameters

Λ =




−22 −4
√
3 2 0 2

√
3 −12 2

√
3 8

−4
√
3 −14 −6

√
3 4
√
3 6 2

√
3 4 −8

√
3

2 −6
√
3 −2 0 6

√
3 −18 2

√
3 0

0 4
√
3 0 16 0 −4 0 0

2
√
3 6 6

√
3 0 10 6

√
3 6 0

−12 2
√
3 −18 −4 6

√
3 −10 4

√
3 −24

2
√
3 4 2

√
3 0 6 4

√
3 −18 − 8√

3
8 −8

√
3 0 0 0 −24 − 8√

3 − 40
3




(4.1)

4With the exception of the pathological cases discussed in 3.2.1.
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L =
(
− 16√

3 0 0 0 0 0 16
3

32
3
√

3

)
(4.2)

M =
(
−8
√
3 0 0 0 0 0 8 16√

3

)
(4.3)

Λ0 = −64
9 , M0 = −112

3 . (4.4)

Applying Algorithm 3, we start by looking for a maximal set of LM -orthogonal eigenvec-
tors which may contain up to seven elements since in this particular case L and M happen
to be colinear. Now, Λ has two 2d eigenvalue subspaces, both being LM -orthogonal, while
all remaining 1d eigenvalue spaces except one, are LM -orthogonal. Thus one finds that the
eigenvectors associated with the eigenvalues

−48, −8
√
5, −8, 8

√
5, 32, (4.5)

where eigenvalues ±8
√
5 have multiplicity 2, form a set of maximal LM -orthogonal eigenvec-

tors which we denote {va}7
a=1. Eq. (4.6) below shows the structure constants Z(ab)c in this

basis of eigenvectors, arranged as a matrix with non-zero elements denoted by ∗.

Z(ab)c=F (va,vb) ·vc=

v1 v2 v3 v4 v5 v6 v7






0 0 ∗ 0 ∗ ∗ 0 F (v1,v2)

0 ∗ 0 0 ∗ ∗ 0 F (v1,v3)

0 0 0 0 0 0 ∗ F (v1,v4)

0 ∗ ∗ 0 0 ∗ 0 F (v1,v5)

0 ∗ ∗ 0 ∗ 0 0 F (v1,v6)

0 0 0 ∗ 0 0 0 F (v1,v7)

∗ 0 0 ∗ 0 0 ∗ F (v2,v3)

0 0 ∗ 0 ∗ 0 0 F (v2,v4)

∗ 0 0 ∗ 0 0 ∗ F (v2,v5)

∗ 0 0 0 0 0 ∗ F (v2,v6)

0 0 ∗ 0 ∗ ∗ 0 F (v2,v7)

0 ∗ 0 0 0 ∗ 0 F (v3,v4)

∗ 0 0 0 0 0 ∗ F (v3,v5)

∗ 0 0 ∗ 0 0 ∗ F (v3,v6)

0 ∗ 0 0 ∗ ∗ 0 F (v3,v7)

0 ∗ 0 0 0 ∗ 0 F (v4,v5)

0 0 ∗ 0 ∗ 0 0 F (v4,v6)

∗ 0 0 0 0 0 0 F (v4,v7)

∗ 0 0 ∗ 0 0 ∗ F (v5,v6)

0 ∗ ∗ 0 0 ∗ 0 F (v5,v7)

0 ∗ ∗ 0 ∗ 0 0 F (v6,v7)

(4.6)

It is now easy to isolate which subsets of 3 eigenvectors may close under the F-product.
Indeed two eigenvectors can only be a basis for a 3d subalgebra if their F-product has
components along no more than one other eigenvector. By implementing this criteria one
avoids to blindly check all

(7
3
)
= 35 possible subsets for closure under the F-product. In

the example at hand, this analysis reveals that

(V1, V4, V7) (4.7)
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forms a 3d, rank-1 subalgebra of su(3) which must then be so(3). It remains to identify
which representation is generated by (4.7) by computing the Dynkin labels. Without loss
of generality, take V7 as the basis for a Cartan subalgebra and let Ṽi be the matrices in the
basis where V7 is diagonal. The only positive simple root is then given by

E+ = Ṽ1 + iṼ4 (4.8)

and has two orthogonal nullvectors u1 and u2 satisfying

E−u1 = 0 (4.9)
E2
−u2 = 0 (4.10)

showing that the representation has two highest weights with Dynkin labels 0 and 1. The
potential given by (4.1)–(4.4) has therefore, as expected, no CP2 symmetry since Λ has three
eigenvectors forming a basis for the representation 2 + 1 of so(3) while it is 3 which corresponds
to CP2. Actually the representation 2 + 1, accompanied by the LM -orthogonality conditions,
corresponds to a different block structure which partially characterizes CP4 in 3HDMs [13].

4.2 N = 4 : Z6-symmetric potential
As an example with four doublets, we now study a Z6-symmetric 4HDM potential which
has both non-CP2 and CP2-symmetric parameter points [37]. Consider the following
numerical instance

Λ =




3
8 0 0 0 0 − 7

8 0 0 0 0 0 0 0 0 0

0 1
4 −

√
3

16 −
√

3
16

1
4 0

√
3

16 0 0 0 0
√

3
16

1
16

√
3

16 −
√

3
2

8

0 −
√

3
16

1
4 − 1

2

√
3

16 0 − 1
16 0 0 0 0 3

16

√
3

16 − 1
16

1
8
√

2

0 −
√

3
16 − 1

2
1
4

√
3

16 0 − 1
16 0 0 0 0 3

16

√
3

16 − 1
16

1
8
√

2

0 1
4

√
3

16

√
3

16
1
4 0 −

√
3

16 0 0 0 0 −
√

3
16 − 1

16 −
√

3
16

√
3
2

8

− 7
8 0 0 0 0 3

8 0 0 0 0 0 0 0 0 0

0
√

3
16 − 1

16 − 1
16 −

√
3

16 0 − 1
8 0 0 0 0 − 3

8 −
√

3
16

1
16 − 1

8
√

2

0 0 0 0 0 0 0 11
8 0 0 − 1

8 0 0 0 0

0 0 0 0 0 0 0 0 1
2 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0

0 0 0 0 0 0 0 − 1
8 0 0 11

8 0 0 0 0

0
√

3
16

3
16

3
16 −

√
3

16 0 − 3
8 0 0 0 0 3

8 −
√

3
16

1
16 − 1

8
√

2

0 1
16

√
3

16

√
3

16 − 1
16 0 −

√
3

16 0 0 0 0 −
√

3
16

1
2

1
4
√

3 − 1
2
√

6

0
√

3
16 − 1

16 − 1
16 −

√
3

16 0 1
16 0 0 0 0 1

16
1

4
√

3
1
2

1
2
√

2

0 −
√

3
2

8
1

8
√

2
1

8
√

2

√
3
2

8 0 − 1
8
√

2 0 0 0 0 − 1
8
√

2 − 1
2
√

6
1

2
√

2
1
4




(4.11)

L =M = 0 (4.12)

Λ0 = 5
4 , M0 = −1 (4.13)

which, in the notation of [37], corresponds to the couplings taking on the values

m2 = 1, Λ = 1, Λ′ = 2, Λ′′ = 3, Λ̃′ = 4, Λ̃′′ = −1
2 , λ1 = i,

λ2 = i, λ3 = ei
2π
3 , λ4 = 1, λ5 = 2, (4.14)

and transformed to a different basis.
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Since L = M = 0, the orthogonality conditions are automatically satisfied by all
eigenvectors of (4.11) and we proceed to compute the su(N) structure constants Z(ij)k in the
basis of eigenvectors, in order to look for 6d subalgebras. Due to its large size, displaying
the Z-matrix is impractical and not very illuminating, therefore we omit it. Nevertheless,
the subalgebra search is easily done using a computer program to implement the strategies
explained in section 4.1, and it is found that two sets of eigenvectors generate 6d subalgebras
of rank 2, for which the only candidate is so(4). Thus it is not necessary to compute the
root system, and it only remains to identify which 4d representations have been found.
From Proposition 2, the only possibilities are 4, i.e. the defining representation, and the
reducible representation 2 + 2′. Computing the Dynkin labels of both representations as
described in section 2.2 one finds

(1, 0) + (0, 1) ∼ 2 + 2′, (4.15)

which is the aforementioned reducible representation, and

(1, 1) ∼ 4 (4.16)

which is the defining representation, as can be verified using e.g. LieART [32]. The detection
of the defining representation (4.16) implies the existence of a CP2 symmetry for this
parameter point.

4.3 N = 7

As a last example which, while mostly academic, shows the power of this method for CP2
detection, we apply Algorithm 3 to a 7HDM potential whose parameter values are given in
appendix B. From a Lie algebraic perspective, N = 7 is interesting as it is the first value
where there exists a semisimple Lie algebra with the same dimension and rank as so(N),
but which is not isomorphic to it, namely sp(6).

Algorithm 1 reveals that a maximal set of orthonormal eigenvectors satisfying LM -
orthogonality has 41 elements. With so many candidate eigenvectors, searching for the
subalgebra pattern (3.2) in su(7) starts to become computationally expensive. For reference,
running our implementation of Algorithm 3 on an ordinary computer it takes less than
a minute to find that 21 eigenvectors close under the F-product, forming a 21d rank-3
subalgebra. The root systems of the two possible algebras, so(7) and sp(6), which differ
only by the lengths of the roots, are shown in figure 1. In the example at hand one finds
that the root system of the algebra to be identified is in fact that of sp(6), and hence the
corresponding potential has no CP2 symmetry.

5 Summary

We have derived necessary and sufficient conditions for an NHDM potential to admit a
CP2 symmetry, which are formulated as relations among vectors that transform according
to the adjoint representation under an SU(N) change of doublet basis. Such vectors can
naturally be thought of elements of su(N), which allows one to use the Lie algebra structure
to verify basis-invariant properties such as being related to a particular subspace in the
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adjoint space. In the case of CP2, the relevant subspace actually corresponds to a so(N)
subalgebra of su(N) and the main task for detecting this symmetry is checking whether a
subset of eigenvectors of the bilinear quadratic form Λ generates the defining representation of
so(N). By considering all the k-dimensional subalgebras of su(N) and all the N -dimensional
representations of so(N) we developed an optimized computable algorithm for this task.
The complete algorithm for detecting CP2 works in principle for any number of doublets
N , and is only limited by computational cost. We find that, running our algorithm on a
regular desktop computer, a generic parameter space point can be labelled CP2-conserving
or CP2-violating in less than a minute for N ≤ 7. However, when a CP2 symmetry exists,
finding a real basis explicitly in general remains out of reach.
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A Additional mathematical results

Proposition 3. Let {Xa} and {Ya} be bases of two equivalent, Hermitian, irreducible and
complex representations of the same Lie algebra i.e. there exists an invertible S such that
Ya = SXaS

−1 for all a. Then S can be chosen to be special unitary.

Proof. We have

Y †a = (S−1)†X†
aS

† = (S−1)†XaS
† = Ya = SXaS

−1

=⇒ XaS
†S = S†SXa

for all a. The matrix S†S thus commutes with all the elements of an irreducible complex
representation and hence, by Schur’s lemma, S†S must be proportional to the identity. Let λ
be the proportionality constant, then λ > 0 since it is an eigenvalue of the positive definite
matrix S†S. Then the rescaled matrix S/

√
λ is unitary, and may always be written as a special

unitary matrix U times a complex phase eiθ. Hence S =
√
λ eiθU while S−1 = U †/(

√
λ eiθ),

and the result follows.

An immediate consequence of Proposition 3 is then the following:

Proposition 4. Two equivalent, irreducible representations of so(N) contained in su(N)
may always be related by a similarity transformation given by a unitary matrix U .

B Parameter values for the N = 7 numerical example

Below are the numerical values for the parameter point used in the example analyzed in
section 4.3. All the non-zero elements are listed, except those which can be obtained by
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symmetry of Λ.

Λ1,3 = −1, Λ4,6 = 1
2 , Λ7,19 = 5

2 , Λ7,43 = 1
2
√
2
,

Λ7,44 = − 1
2
√
6
, Λ7,45 = − 1

4
√
3
, Λ7,46 = −

√
5
4 ,

Λ8,20 = 1, Λ10,13 = 3
2 , Λ11,15 = −1

4 , Λ11,16 = 3
4 ,

Λ11,17 = 1
4 , Λ12,21 = 1, Λ15,16 = 1

4 , Λ15,17 = 1,

Λ15,18 = 1
2
√
2
, Λ16,17 = −1

4 , Λ17,18 = 1
2
√
2
, Λ19,43 = 1

2
√
2
,

Λ19,44 = − 1
2
√
6
, Λ19,45 = − 1

4
√
3
, Λ19,46 = −

√
5
4 , Λ22,24 = −3

2 ,

Λ25,27 = −1
2 , Λ28,31 = 1

4 , Λ28,34 = −1
4 , Λ28,40 = −3

4 ,

Λ29,41 = −2, Λ30,31 = − 1
2
√
2
, Λ30,34 = − 1

2
√
2
, Λ31,34 = 3

2 ,

Λ31,40 = 1
4 , Λ32,37 = 3

2 , Λ33,42 = −3, Λ34,40 = −1
4 ,

Λ35,36 = − 1
2
√
2
, Λ35,38 = − 1

2
√
2
, Λ36,38 = 7

4 , Λ43,44 = −
√
3
4 ,

Λ43,45 = −1
4

√
3
2 , Λ43,46 = −3

4

√
5
2 , Λ44,45 = − 1

4
√
2
, Λ44,46 = 3

4

√
3
10 ,

Λ44,47 = − 3√
5
, Λ45,46 = 1

4

√
3
5 , Λ45,47 = 1

2
√
10
, Λ45,48 = −

√
7
2 ,

Λ46,47 = 11
10
√
6
, Λ46,48 =

√
7
30 , Λ47,48 = 1

3

√
7
5

Li = 1, i = 1, 2, 3, 4, 5, 6, 22, 23, 24, 25, 26, 27,

Li =
1√
2
, i = 7, 8, 10, 11, 12, 15, 28, 29, 31, 32, 33, 36, 40, 41, 42,

Li = − 1√
2
, i = 13, 16, 17, 19, 20, 21, 34, 37, 38,

L43 =
√
3
2 , L44 = 1

6
(
1 + 2

√
5
)
,

L45 = 5 +
√
5 + 3

√
105

30
√
2

, L46 = 1
60
(
−7
√
6− 3

√
14 + 5

√
30
)
,

L47 = 1
30
(
18−

√
21
)
, L48 = 1

2

√
5
3 ,

M = L.
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Abstract

By considering the basis-covariant constituents of N -Higgs-doublet potentials,
we derive necessary and sufficient conditions for canonical SO(4)C Custodial Sym-
metry (CS) of potentials with N > 2 doublets, based on representation-theoretical
and geometrical relations. In essence, our characterization relates the presence of
canonical CS to basis-covariant vectors corresponding to particular bases of the
defining representation of the orthogonal Lie algebras. For N = 3, 4 and 5, the con-
ditions demand little computational effort to be evaluated, and we provide practical
algorithms that may be efficiently implemented in a computer program, for deciding
whether or not a potential is custodial-symmetric.
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1 Introduction

It is well known that extending the Standard Model (SM) with an arbitrary number of
SU(2)L doublets does not affect the value of the ρ parameter

ρ =
M2

W

M2
Z cos2 θW

= 1 (1.1)

at tree level, which is one of the reasons for the considerable attention that Multi-Higgs-
Doublet Models (NHDMs) have received. The scalar potential of the SM has a related
structural property, Custodial Symmetry (CS), which protects ρ from large quantum
corrections [1]. CS is an accidental symmetry whereby the potential is invariant under
the larger group SO(4)C ≃ (SU(2)L × SU(2)R)/Z2 ⊃ SU(2)L × U(1)Y . In the limit the
hypercharge coupling g′ → 0 the kinetic terms are custodial-symmetric as well, and after
spontaneous symmetry breaking SO(4)C is broken down to custodial SO(3)C . Then the
gauge bosons transform as a triplet under SO(3)C , and hence yields mW = mZ and no
electroweak mixing, to all orders of perturbation theory, when disregarding fermions. Due
to the enhanced symmetry, approximate CS will keep ρ near the experimentally measured
magnitude, which is extremely close to one [2].

Naturally, it is desirable to preserve these features in multi-Higgs doublet models.
However, with more than one doublet, SO(4)C is not an accidental symmetry of the
potential anymore (and in addition, there are other possible symmetry breaking patterns,
in contrast to the SM). Therefore one would like to identify the circumstances under which
a NHDM potential is symmetric under SO(4)C . Nevertheless, this is a difficult task due
to the basis freedom which can completely obfuscate a symmetry. In order to overcome
basis freedom and identify SO(4)C in a basis-independent way, we will characterize it using
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relations among basis-covariant objects, a powerful framework which has been successfully
applied to other NHDM symmetries [3–6].

We will focus our attention on custodial transformations where UR ∈ SU(2)R acts as

(
iσ2ϕ

∗
i ϕi

)
≡ Bii → BiiU

†
R , ∀i ∈ {1, . . . , N}, (1.2)

that is, has the same action on each bidoublet, in some doublet basis. There are, however,
other inequivalent possibilities for CS [7–9], e.g. a 3HDM with SU(2)R acting only on
B33, which are custodial in the sense that they may, with an appropriate symmetry
breaking pattern, also protect ρ from large corrections. However, the possible distinct
SU(2)R actions on the bidoublets will not be arbitrary [10]. We do not explore these
non-canonical possibilities here, and, unless otherwise specified, from here on the term
”custodial symmetry” will exclusively refer to canonical SO(4)C custodial symmetry, where
the action of SU(2)R is given by (1.2) in some doublet basis. It was shown in [11] that for
all custodial symmetries, where i) the Higgs kinetic term is left invariant, ii) T3R = 1

2
Y

fixes U(1)Y ⊂ SU(2)R and iii) SU(2)R acts as N copies of the defining representation, i.e. as
in (1.2) in some basis, the CS is equivalent to canonical SO(4)C , and the potential can be
transformed into a characteristic form by a Higgs basis transformation. Thus, the problem
of identifying canonical CS can be reduced to identifying this characteristic form of the
potential. Different implementations of CS in the 2HDM have been introduced in [10,12],
and were shown to be equivalent to canonical CS in [11,13,14]. Different aspects of CS in
models with more than two doublets have been considered in [8,11,15–18]. With vacuum
alignment in the direction of the CP-even fields, canonical CS in NHDMs will generate
a mass degeneracy between charged and CP-odd sectors [14, 15]. The present work is
especially relevant for models with 3, 4 or 5 Higgs doublets. In the 1970s, Weinberg
presented a model with three doublets to accommodate spontaneous CP violation and
natural flavour conservation [19]. Since then, 3HDMs have received significant attention.
Models with four doublets have been considered in e.g. [20–25], while 5HDMs in the
context of higher-order CPs have been studied in [26].

While simple necessary and sufficient conditions for canonical CS can be formulated
in the 2HDM in the bilinear formalism [13], the problem becomes more difficult with
N > 2 doublets. In this work we formulate general conditions for canonical SO(4)C CS
for a potential with any number of doublets. For N = 3 doublets, our necessary and
sufficient conditions are essentially the same as the known result where canonical CS is
identified, in the adjoint space, by geometrical relations among the vectors which charac-
terize the potential [11, 27]. However, whereas these previous works used a combination
of basis-invariants, we use covariant relations which, as we will see, generalize better and
can be implemented in practical algorithms for testing whether a potential is custodial-
symmetric. Indeed, we are able to devise practical procedures for detecting canonical CS
in potentials with N = 4 and N = 5 doublets.

This paper is structured as follows. In Section 2 we start by describing the covariants-
based methods and proceed to derive a necessary and sufficient condition for canonical
CS by making use of representation theory. Then, in Section 3, we show that our general
condition can be implemented into practical algorithms for canonical CS detection in
potentials withN = 3, 4 and 5 doublets. Finally, our findings are summarized in Section 4.
In Appendices A and B we derive some auxiliary mathematical results and a method for
handling the special case of potentials with large degeneracies, respectively.
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2 Method

This work relies on methods similar to those applied to order-2 CP symmetry in [6]
where symmetries of the potential are characterized by representation-theoretical relations
among basis-covariant objects. For completeness, and in order to set the notation, let us
summarize this framework and recall important definitions.

We will write the potential for N Higgs SU(2)L doublets Φi in terms of gauge invariant
bilinears

K0 = Φ†
iΦi , Ka = Φ†

i (λa)ijΦj. (2.1)

where Ka, a = 0, . . . , N2 − 1 are given in terms of the generalized Gell-Mann matrices
λa. These matrices form a basis for the Lie algebra su(N) and satisfy the commutation
relations1

[λa, λb] = 2ifabcλc. (2.2)

For convenience, we order the generalized Gell-Mann matrices as in [18], where the
custodial-breaking bilinears appear first. That is

λ∗
a = −λa for a = 1, . . . , k ≡ N(N − 1)

2
. (2.3)

Under a change of basis
Φi → UijΦj , U ∈ SU(N), (2.4)

it is readily seen that K0 is a singlet while Ka transforms under the adjoint representation

K0 → K0 , Ka → Rab(U)Kb (2.5)

with

Rab(U) =
1

2
Tr(U †λaUλb). (2.6)

With these variables, the most general gauge invariant potential is then given by [28]

V = M0K0 +MaKa + Λ0K
2
0 + LaK0Ka + ΛabKaKb (2.7)

and the coupling constants inherit from the bilinears simple transformation properties
under a change of basis

Λ → R(U)ΛRT (U) (2.8)

L → R(U)L (2.9)

M → R(U)M (2.10)

Because basis transformations act on these couplings as the adjoint representation
of SU(N), that is, the linear action of the group on its own Lie algebra, all the adjoint
quantities which characterize the potential can be thought of as elements of su(N). Thus,
making use of this Lie algebra structure, it is possible to associate properties of the
potential with representation theoretical relations inside of su(N). Actually, as we will

1In this basis the Killing form is proportional to the identity, hence we do not differentiate between
upper and lower Lie algebra indices. Furthermore, we adopt the physicists’ definition of a Lie algebra.

For mathematicians a corresponding basis would be {iλj}N
2−1

j=1 .
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see in Section 2.3, a characteristic of CS is that a set of adjoint vectors forms a particular
basis for the defining representation of so(N).

More formally, the mapping

Ω : RN2−1 → su(N) (2.11)

a 7→ aiλi. (2.12)

defines an isomorphism between su(N) and RN2−1 when the latter is equipped with the
product

F : RN2−1 × RN2−1 → RN2−1 (2.13)

(a, b) 7→ fijkaibj ≡ F
(a,b)
k (2.14)

where fijk are the structure constants of su(N) in the Gell-Mann basis. Following the
nomenclature of [5], where it was used to identify 3HDM symmetries, we will refer to F as
the F-product. In what follows we will denote vectors of RN2−1 with lower case letters and
the associated su(N) matrices by uppercase letters e.g. A ≡ aiλi. With these definitions,
one has the following correspondence between commutators in su(N) and F-products in
RN2−1

F (a,b) = c ⇔ [A,B] = 2iC. (2.15)

It is important to note that F-product relations are preserved by a change of Higgs basis
U i.e.

F (a,b) = c ⇔ F (a′,b′) = c′, (2.16)

where x′ = R(U)x, cf. (2.6), as is easily seen by considering the corresponding commuta-
tion relations.

2.1 The custodial-symmetric potential

With the bilinears custodially ordered as in (2.3), the potential is custodial-symmetric if
and only if there exists a basis where Λ assumes a block-diagonal form [11]

ΛC =

(
CN 0
0 AN

)
(2.17)

where AN is an arbitrary, real and symmetric N2 − 1 − k × N2 − 1 − k matrix and CN

is a k × k matrix which we will refer to as the custodial block. For N ≤ 3, the custodial
block consists only of zeroes, corresponding to the absence of terms of the form

ĈijĈkl ≡ Im(Φ†
iΦj)Im(Φ†

kΦl) (2.18)

in V , however with more than three doublets additional custodial-invariant terms can
be constructed [11] resulting in a non-zero custodial block (cf. Section 3 for explicit ex-
pressions of CN). Note that CS imposes stronger constraints on the NHDM potential
than order-2 CP symmetry which corresponds to the block structure (2.17) without any
restrictions on the upper block [6, 11,27].
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The matrix Λ in (2.7), being real and symmetric, can be written in terms of its
eigenvalues and orthonormal set of eigenvectors, a form known as its spectral decom-
position. This can always be done, even if the rotation that diagonalizes Λ is not in
Adj(SU(N)) ⊂ SO(N2 − 1). Let us therefore expand ΛC in terms of its eigenvalues and
eigenvectors in a basis where the CS is manifest

ΛC =
k∑

a=1

βatat
T
a +

N2−1−k∑

b=1

γbqbq
T
b . (2.19)

with
k∑

a=1

βatat
T
a ≡

(
CN 0
0 0

)
,

N2−1−k∑

b=1

γbqbq
T
b ≡

(
0 0
0 AN

)
. (2.20)

These important relations define the eigenvalues and eigenvectors, βa and ta, which
are used extensively in the remainder of the text. From (2.20), it can be seen that
Span(t1, . . . , tk) = Span(e1, . . . , ek) which, through the isomorphism (2.12), corresponds
to the defining representation of so(N) within su(N).

On the other hand, the part of the potential (2.7) that is linear in the bilinears Ka is
determined by two adjoint vectors, L and M . For a custodial-symmetric potential in a
basis where the symmetry is manifest, the absence of custodial breaking terms implies

L · ta = M · ta = 0, ∀a ∈ 1, . . . , k. (2.21)

We will use the same concise nomenclature as in [6] and will refer to these conditions as
LM -orthogonality.

Let us now take a closer look at the custodial block CN which, as we will see, determines
for each N the particular form of the conditions for CS. The bilinears Ĉ from (2.18) will
in general break CS, but the combination

I
(4)
abcd = ĈabĈcd + ĈadĈbc + ĈacĈdb, (2.22)

with 1 ≤ a, b, c, d ≤ N , will be invariant under CS, as shown by Nishi in [11]. I(4) is totally
antisymmetric in all of its indices, and hence I(4) is zero if two indices are identical, so
these terms will vanish in the 3HDM. The most general, manifestly custodial-symmetric
terms quadratic in the bilinears Ĉ may then be written

VĈ2 = λabcdI
(4)
abcd, (2.23)

with summation over repeated indices, and where we may (and will) take a < b < c < d
in the sum.

The custodial block CN will then be given by

(CN)ij =
1

2

∂2VĈ2

∂Ĉm(i)n(i)∂Ĉm(j)n(j)

, (2.24)

where 1 ≤ i, j ≤ k = N(N − 1)/2 and (m(i), n(i)) is a bijection between the k integers i
and the k pairs (m,n) with 1 ≤ m < n ≤ N . We will apply the bijection which gives us
the lexicographic order

{Ĉi}ki=1 = {Ĉ12, Ĉ13, . . . , Ĉ1N , Ĉ23, Ĉ24, . . . , ĈN−1,N}, (2.25)
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consistent with the order of the generalized Gell-Mann matrices referred to in Section 2,
cf. [18].

A careful inspection of (2.24) reveals that the matrix structure of CN follows a fairly
simple pattern when the number of doublets increases. For N = 4, the smallest number
of doublets with VĈ2 ̸= 0, the custodial block has an anti-diagonal structure

C4 = λ1234




0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0




(2.26)

while for N > 4, the same anti-diagonal structure repeats once for all
(
N
4

)
possible subsets

of 4 distinct indices i.e.
CN =

∑

a<b<c<d

λabcdD
(abcd)
N (2.27)

where D
(abcd)
N is a k × k matrix which is zero everywhere except in the 6 × 6 sub-block

consisting of row and column numbers
(
i(a, b), i(a, c), i(a, d), i(b, c), i(b, d), i(c, d)

)
, with

i(a, b) the lexicographic ordering bijection, where each sub-block has the anti-diagonal
structure (2.26).

2.2 Representation and embedding indices

Before deriving the representation-theoretical relations which characterize CS, let us recall
some notions of Lie algebra theory related to the identification of representations. In
su(N) and so(N), one can define an inner product with

⟨X, Y ⟩su(N) ≡
1

2
Tr(XY ) =

1

4N
Tr(adXadY ), ∀X, Y ∈ su(N) (2.28)

⟨X, Y ⟩so(N) ≡
1

4
Tr(XY ), ∀X, Y ∈ so(N), N ≥ 4 (2.29)

where the numerical factors in front of the traces ensure a consistent normalization of
the roots of both Lie algebras [29, 30]. We have here chosen the inner products such
that normalization is conserved by the mapping (2.12), which infer long roots of the Lie
algebra are normalized as well.

Similarly, an inner product for a representation ϕ : g → gl(n,C) can be defined by

⟨ϕ(X), ϕ(Y )⟩ ≡ 1

2
Tr(ϕ(X)ϕ(Y )). (2.30)

Having properly defined inner products, one can compute the so-called representation
index of ϕ

Iϕ ≡ ⟨ϕ(X), ϕ(Y )⟩
⟨X, Y ⟩g

, (2.31)

sometimes called Dynkin index, which is independent of X, Y and can be used to charac-
terize a representation [31]. From the definitions (2.28), (2.29) and (2.31) it can be seen
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for example that the defining and adjoint representations of su(N) have index 1 and 2N ,
respectively, while the defining representation of so(N), N, has index2

IN ≡
{
4 , N = 3

2 , N > 3
. (2.32)

In what follows, we will consider subalgebras of su(N) and their embeddings into the
defining representation of su(N). An embedding of a subalgebra h is a faithful Lie algebra
homomorphism p : h → su(N) and inequivalent embeddings are characterized by the so-
called embedding index

Jp =
⟨p(X), p(Y )⟩su(N)

⟨X, Y ⟩h
, ∀X, Y ∈ h. (2.33)

Given such a subalgebra embedding and a representation ϕ of su(N), the composition
ϕ ◦ p furnishes a representation of h. The representation and embedding indices are
related by [29]

Jp =
Iϕp
Iϕ

. (2.34)

In particular, if ϕ is the defining representation of su(N) then Jp = Iϕp. If ϕ◦p is reducible,
the index will be the sum of the indices of the irreducible components.

As an example, let us consider the embeddings of so(N) into su(N) which are of
special interest in this work. Consider a normalized basis of so(N), {Xa}ka=1, satisfying
commutation relations

[Xa, Xb] ≡ 2igabcXc. (2.35)

An embedding p into su(N) naturally preserves these commutation relations, but it may
not preserve the normalization of the basis elements. Indeed, according to (2.33), the
embedded basis elements {p(Xa)}ka=1 have norm

√
Jp in su(N). Hence the normalized

embedded basis {p(X̄a) ≡ p
(

Xa√
Jp

)
}ka=1 satisfies the commutation relations

√
Jp [p(X̄a), p(X̄b)] = 2igabcp(X̄c). (2.36)

The point is that if one has found a subalgebra, e.g. so(N) in su(N), then information
about the embedding and representation can be extracted by consistently normalizing
a basis of the subalgebra since this makes the embedding index apparent. Particularly
relevant to this work is the embedding of the defining representation of so(N) into su(N)
furnished by the antisymmetric Gell-Mann matrices {λa}ka=1. In that case the index of
the relevant embedding, Jp, equals the index of the defining representation of so(N), IN ,
given in (2.32) and so (2.36) yields the following relation between the structure constants
of so(N) and su(N) in the Gell-Mann basis, gabc and fabc

gabc =
√
INfabc , a, b, c = 1, . . . , k. (2.37)

2Recall that the defining representation of so(3) is equivalent to the adjoint representation of su(2).
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2.3 A general necessary and sufficient condition for custodial
symmetry

From the spectral decomposition (2.19) we can deduce a basis-invariant signature of CS,
namely, in the presence of CS, Λ has k LM -orthogonal eigenvectors ta with special eigen-
values βa, spanning the subspace Span(e1, . . . , ek) in some Higgs basis. The eigenvalues
βa and the eigenvectors’ components (ta)b depend on the number of doublets and can be
calculated by considering the most general custodial-symmetric NHDM in a basis where
the symmetry is manifest (cf. Section 3).

Now Span(e1, . . . , ek) is isomorphic to the defining representation of so(N), which
means that the matrices

Ta = (ta)bλb (2.38)

form a basis for the defining representation of so(N). Depending on the components of ta,
their commutation relations can be different from the usual so(N) commutation relations√
IN [λa, λb] = 2igabcλc and in general we will have

√
IN [Ta, Tb] = 2ig′abcTc. (2.39)

where IN is the representation index of the defining representation of so(N), g′abc =√
IN tadtbetcffdef and we abbreviate the components (ta)b ≡ tab from now on. Equivalently,

in RN2−1 we have, according to (2.15), the F-product relations

√
INF

(ta,tb) = g′abctc. (2.40)

This property, being a vector relation, can be verified in any Higgs basis, cf. (2.16). Indeed,
under a basis change U ∈ SU(N)

Ta → UTaU
† ≡ Va ⇔ tab → R(U)bctac ≡ vab, (2.41)

and the commutation and F-product relations take the same form as (2.39) and (2.40).
We note that this characterization of CS is the same as that of CP2 symmetry derived

in [6] strengthened with restrictions on the eigenvalues and the F-product relations of the
LM -orthogonal eigenvectors which span the defining representation of so(N). While
it would be possible to detect CS by first establishing CP2 and then checking if the
eigenvalues and F-product relations are consistent with CS, we will now show that a
much simpler procedure, based on embedding indices, can be devised.

To prove that the conditions given above are also sufficient we will make use of a result
proved in [6], namely, inside su(N), there are no so(N) subalgebras apart from the defining
representation3, except for N = 3, 4, 5, 6, 8 for which the alternative so(N) subalgebras
are listed in Table 1. We also include the embedding indices of these subalgebras in su(N),
calculated with LieART [32].

3Both representations and subalgebras of Lie algebras are defined as Lie algebra homomorphisms. The
only distinction between the two concepts is that a Lie subalgebra always corresponds to an injective
(one-to-one) homomorphism whose image lies within the ambient algebra, whereas representations do
not in general respect this restriction.
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Dimension Representation Index
N = 3 2+ 1 1
N = 4 2+ 2′ 1
N = 5 4+ 1 1
N = 6 4+ 1+ 1 1

4̄+ 1+ 1 1
N = 8 8s 2

8c 2

Table 1: so(N) subalgebras different from the defining representation and their embedding
indices in su(N). For reference, the defining representation has index 2 for N > 3 and
index 4 for N = 3, cf. (2.32).

We can now state and prove the sufficiency of our general condition which links CS to
special bases of the defining representation of so(N).

Theorem 1. Let N > 2 and N ̸= 8. Then an NHDM potential is custodial-symmetric if
and only if the matrix Λ has k = N(N − 1)/2 LM-orthogonal normalized eigenvectors
va, with the same eigenvalues and F-product relations as the normalized eigenvectors ta
of some instance of the custodial block CN .

Proof. (⇐) :(⇐) :(⇐) : The linear mapping p given by p(Ta) = Va is a Lie algebra homomorphism
of so(N) into su(N): It respects the commutator, in the sense p([Ta, Tb]) = [p(Ta), p(Tb)],
since, by assumption, also the normalized eigenvectors va satisfy the F-product rela-
tions (2.40), i.e.

√
INF

(va,vb) = g′abcvc, (2.42)

where g′abc are known numbers.4 Moreover, it is faithful due to Proposition 1 in Ap-
pendix A, so p is a subalgebra embedding of so(N). This subalgebra will correspond
to the defining representation, since the embedding index IN is unique for the defining
representation. Indeed, if N = 3, 4, 5, 6 then the other possible so(N) subalgebras have
embedding index (cf. Table 1) different from that of the defining representation (2.32).
The very special case N = 8 must be excluded since so(8) has three inequivalent rep-
resentations with the same embedding index5 in su(8). In all other cases, the defining
representation is the only so(N) subalgebra according to Proposition 2 in [6] quoted in
Table 1 above. The representation generated by {Va} is therefore equivalent to the {Ta}
representation and moreover, using Proposition 3 from the Appendix, the equivalence
is provided by a unitary matrix U and thus can be achieved by a change of Higgs ba-
sis. Hence Ta = UVaU

† and ta = R(U)va, and writing the rotated Λ using its spectral
decomposition, we get Λ′ = RΛRT = βaRvav

T
a R

T = βatat
T
a where a is summed up to

N2 − 1 and only the first k eigenvectors are relevant for the custodial structure. Finally,
since {ta}ka=1 and {βa}ka=1 corresponded to an instance of the custodial block CN , Λ

′ is

4Here p may be extended beyond so(N) by linearity. Hence p([Ta, Tb]) = −ip(i[Ta, Tb]), since [Ta, Tb]
strictly speaking is not an element of so(N), if we insist on applying the physicists’ definition of a Lie
algebra.

5This is a consequence of triality, a peculiar feature only present in so(8) which originates in the
exceptionally large symmetry of the D4 root system [31,33].
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manifestly custodial-symmetric. Hence there are no custodial-breaking terms quadratic
in the bilinears Ka. Moreover, since va · L = va ·M = 0 for a ≤ k, we have in the primed
basis L,M ∈ Span(ek+1, . . . , eN2−1) and there are no custodial-breaking terms linear in
Ka either. Therefore the potential is custodial-symmetric.

(⇒) :(⇒) :(⇒) : This follows from the arguments given at the beginning of this section.

The (⇒) direction of Theorem 1 will hold for N = 8 as well.

3 Conditions for custodial symmetry

In this section we show how CS can be detected in practice, starting with the known case
of the 3HDM [11] and then moving on to the 4HDM and 5HDM. For these models, the
eigenvectors of the custodial block (which is described in Section 2.1) take a simple form
and all the Lie algebra bases of the defining so(N) representation which correspond to CS
can be identified, allowing for a practical application of Theorem 1. The concrete algo-
rithms which we introduce below can be implemented numerically to decide if a parameter
space point of a potential is custodial-symmetric, although analytical implementations are
possible for sufficiently simple potentials. In the latter case, the existence of CS can be
established at once for all possible values of the parameters.

3.1 N = 3

For the 3HDM the custodial block consists only of zeroes

C3 =



0 0 0
0 0 0
0 0 0


 (3.1)

and hence the eigenvectors and eigenvalues for the custodial block in the spectral decom-
position of ΛC (2.19) are simply given by

tai = δai, βa = 0, a = 1, 2, 3. (3.2)

These normalized vectors satisfy the F-product relations

2F (ta,tb) = ϵabctc (3.3)

since the associated matrices Ta are simply given by the Gell-Mann matrices λ1, λ2, λ3 and
obey the commutation relations [Ta, Tb] = iϵabcTc. According to (2.40), one can read off
the index

√
I3 = 2 in (3.3) which signals an embedding of the defining representation of

so(3), 3, in su(3) (cf. (2.32)). We note, in passing, that 3 has previously been distinguished
from 2+ 1 using a generalized pseudoscalar [11]

I(ta, tb, tc) ≡ F (ta, tb) · tc (3.4)

with the values 1
2
and 1 characterizing 3 and 2+ 1. These numerical values are determined

by embedding indices and, in particular, it is easy to see that (3.4) follows from (3.3).
Applying Theorem 1, we can now devise a practical procedure for verifying whether a

3HDM is custodial-symmetric which is summarized in Algorithm 1.
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Algorithm 1 Determining if a 3HDM potential has a CS

1 If dim(ker(Λ)) ≥ 3 proceed, else return False.

2 Let WLM
0 be the LM -orthogonal subspace of ker(Λ). If dim(WLM

0 ) ≥ 3 proceed,
else return False.

3 If there exists three orthonormal vectors in WLM
0 satisfying the F-product rela-

tions (3.3) return True, else return False.

A nice feature of Algorithm 1 is that, if dim(WLM
0 ) = 3, then the F-product re-

lations (3.3) are satisfied in any orthonormal basis of WLM
0 due to the invariance of

these relations under rotation, cf. Proposition 4 in the Appendix. In the event that
dim(WLM

0 ) > 3, identifying a set of LM -orthonormal nullvectors satisfying the right
F-products may be non-trivial. In Appendix B we illustrate how this may be done by
numerically solving a set of F-product closure equations for three orthonormal vectors in
WLM

0 .

3.2 N = 4

With four doublets the custodial block now takes the form

C4 = α




0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0




(3.5)

with α a real constant. The cases α ̸= 0 and α = 0 have different basis-invariant signatures
of CS and hence are identified by different conditions. To determine whether an arbitrary
potential has CS, both manifestations, α ̸= 0 and α = 0, must be checked as described
below.

The case α ̸= 0

With α ̸= 0, CS implies the matrix Λ has two sets of threefold degenerate eigenvectors
with eigenvalues ±α. In the basis were the symmetry is manifest, these eigenvectors have
components

t+1 =
1√
2
(+1, 0, 0, 0, 0,−1,09)

T

t+2 =
1√
2
(0,+1, 0, 0,+1, 0,09)

T

t+3 =
1√
2
(0, 0,−1,+1, 0, 0,09)

T (3.6)

t−1 =
1√
2
(+1, 0, 0, 0, 0,+1,09)

T
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t−2 =
1√
2
(0,+1, 0, 0,−1, 0,09)

T

t−3 =
1√
2
(0, 0,+1,+1, 0, 0,09)

T

and one finds that they satisfy the so(3)⊕ so(3) F-product relations

√
2F (t±a ,t±b ) = ϵabct

±
c (3.7)

F (t±a ,t∓b ) = 0

which, as expected, come with index
√
I4 =

√
2 and correspond to an embedding of the

defining representation of so(4). The only other faithful representation which could arise,
2+ 2′ [6], would have index I2+2′ = 1 (cf. Table 1 or [31]) and could be easily discarded.

Having found the F-product relations characterizing CS, Theorem 1 can be imple-
mented into Algorithm 2 to detect α ̸= 0 instances of CS. Note that there may be several
pairs of threefold degenerate eigenvalues ±α, and the algorithm must be applied once for
each possible α.

Algorithm 2 Determining if a 4HDM potential has a CS (α ̸= 0)

1 If, for any α ∈ R, Λ has two eigenvalues −α and α such that dim(W±α) ≥ 3 for
both eigenvalue spaces W±α, proceed. Else return False.

2 Let WLM
±α be the LM -orthogonal subspaces of W±α. If dim(WLM

±α ) ≥ 3 proceed, else
return False.

3 If two subsets of three basis vectors v±a satisfy the F-product relations (3.7) return
True, else return False.

The F-product relations (3.7) determine all the Lie algebra bases which correspond
to CS for this model and it is remarkable that, when dim(WLM

+α ) = dim(WLM
−α ) = 3,

analogously to the case of the 3HDM, these relations are independent of the choice of bases
for the LM -orthogonal degenerate subspaces WLM

±α , as follows directly from Proposition 4.
When there are extra degeneracies and dim(WLM

±α ) > 3, the techniques of Appendix B
may be necessary in step 3 of Algorithm 2 to isolate two sets of orthonormal eigenvectors
satisfying the F-products (3.7).

The case α = 0

It may happen that the potential under consideration corresponds to an instance of CS
where α = 0. In that case Λ has 6 nullvectors generating the defining representation of
so(4). Note that, in contrast with the case α ̸= 0, any basis of the defining representation
of so(4) will correspond to CS. Therefore there are no particular F-product relations to
be checked. Instead one must verify whether or not the 6 nullvectors induce the defining
representation of so(4). This is a slightly stronger condition than the existence of an
order-2 CP symmetry [6], thus α = 0 manifestations of CS can be checked by applying
Algorithm 3 from [6] and restricting the candidate eigenvectors to nullvectors. In case of
more than 6 nullvectors, the methods of Appendix B may be applied.
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In an earlier work [18] on CS by one of the authors, the custodially invariant terms
I4abcd were not included, and hence, conditions only for the cases of the type α = 0
(which automatically holds for the 3HDM) were given. Thus, the present work supersedes
[18]. Moreover, the conditions in the present article are far more analytical than the
conditions in [18] since they, in the absence of extended degeneracies, do not rely on
solving large systems of quadratic equations. Therefore, the methods of the present article
may be more efficient in several cases, in addition to being complete and less numerical
in nature. Nevertheless, in the presence of extended degeneracies, like 7 nullvectors for
N = 4, the numerical methods of Appendix B together with the conditions of [18],
might just as efficiently determine if a potential is custodial-symmetric, since we in this
case will have to find the minimum of a quartic polynomial (the cost function) in both
approaches, cf. Appendix B. Anyway, [18] will here yield the same results as the present
article. However, applying the original numerical methods of [18] will be significantly
more computationally demanding.

3.3 N = 5

Increasing the number of doublets to five, the number of free parameters λabcd in the
custodial block increases to

(
5
4

)
= 5 which seems to make the detection of CS more

difficult as the the eigenvectors of C5 are not constants as they were for N = 4 and
N = 3. However, we show in Proposition 5 in the Appendix that C5 always can be
transformed into the form

C5 = αD1234
5 = α




0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




(3.8)

by a rotation of the doublets. Therefore all instances of CS for the 5HDM are equivalent
to (3.8). As in the 4HDM, the cases α = 0 and α ̸= 0 must be treated separately.
Moreover, we note that C5 in (3.8) is identical to C4 in (3.5) if the four zero rows and
columns are removed. Hence we get the same eigenvalue pattern as for N = 4, except for
4 additional nullvectors. These characteristic eigenvalue degeneracies are also mentioned
in reference [11].

The case α ̸= 0

Thanks to the equivalences among all instances of CS discussed above, the constant
eigenvectors of (3.8)

t+1 =
1√
2
(+1, 0, 0, 0, 0, 0, 0,−1, 0, 0,014)

T

13



t+2 =
1√
2
(0,+1, 0, 0, 0,+1, 0, 0, 0, 0,014)

T

t+3 =
1√
2
(0, 0,−1, 0,+1, 0, 0, 0, 0, 0,014)

T

t−1 =
1√
2
(+1, 0, 0, 0, 0, 0, 0,+1, 0, 0,014)

T

t−2 =
1√
2
(0,+1, 0, 0, 0,−1, 0, 0, 0, 0,014)

T

t−3 =
1√
2
(0, 0,+1, 0,+1, 0, 0, 0, 0, 0,014)

T (3.9)

including nullvectors

n1 = (0, 0, 0,+1, 0, 0, 0, 0, 0, 0,014)
T

n2 = (0, 0, 0, 0, 0, 0,+1, 0, 0, 0,014)
T

n3 = (0, 0, 0, 0, 0, 0, 0, 0,+1, 0,014)
T

n4 = (0, 0, 0, 0, 0, 0, 0, 0, 0,+1,014)
T (3.10)

characterize CS in the 5HDM. In (3.9) the eigenvectors t±a , (a = 1, 2, 3) have eigenvalue
±α and satisfy so(4) ∼= so(3)⊕ so(3) F-products

√
2F (t±a ,t±b ) = ϵabct

±
c (3.11)

F (t±a ,t∓b ) = 0.

The F-product relations involving the nullvectors na are not meaningful in practice since
they depend on which basis is chosen for the nullspace. Without all the F-products one
cannot establish whether or not a given set of 10 eigenvectors spans so(5). Indeed, even
if (3.11) is satisfied, it may be that the 10 eigenvectors do not generate a subalgebra
i.e. do not close under the F-product. To ensure that one has found a 10-dimensional
subalgebra one can use projectors as follows. Let va be a set of 10 candidate orthonormal
eigenvectors of Λ, this set closes under the F-product if and only if

(I − P0)F
(va,vb) = 0 , ∀a, b ∈ {1, . . . , 10} (3.12)

where I is the identity matrix and P0 =
∑10

a=1 vav
T
a is a projector onto the subspace

spanned by this subset of eigenvectors.
Analyzing the subalgebras of the classical Lie algebras [29, 32, 34] one finds that the

only 10d su(5) subalgebra containing an so(4) subalgebra is so(5) ∼= sp(4). Moreover,
the prefactor

√
I5 =

√
2 in (3.11) corresponds to the embedding index of the defining

representation of so(5) in su(5). Thus, these F-product relations, although incomplete,
are still sufficient to establish CS using Theorem 1, provided that the eigenvalue pattern
is correct and that the six eigenvectors completed with 4 nullvectors form a subalgebra.
The practical steps for checking α ̸= 0 instances of CS of a 5HDM potential are given in
Algorithm 3 below. As in the N = 4 case, this algorithm is to be applied once for each
pair of threefold degenerate eigenvalues α.

It should be noted that, as before, this CS test relies on verifying whether sets of
three degenerate eigenvectors satisfy so(3) F-product relations, which are independent of
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Algorithm 3 Determining if a 5HDM potential has a CS (α ̸= 0)

1 If, for any α ∈ R, Λ has two eigenvalues −α and α such that dim(W±α) ≥ 3 for
both eigenvalue spaces W±α, and dim(W0) ≥ 4, proceed. Else return False.

2 Let WLM be the LM -orthogonal subspaces of W . If dim(WLM
±α ) ≥ 3 and

dim(WLM
0 ) ≥ 4 proceed, else return False.

3 If two subsets of three orthonormal vectors of WLM
±α satisfy the F-product rela-

tions (3.11) and can be completed by four vectors of WLM
0 into a 10d subalgebra,

return True. Else return False

the choice of orthonormal basis for the degenerate subspace. It is again this fact that
makes the test practical to implement. Moreover, if dim(WLM

0 ) = 4 then, in step 4 of
Algorithm 3, closure can be checked in any basis of WLM

0 . However, cases with extended
degeneracies such that either dim(WLM

0 ) > 4 or dim(WLM
±α ) > 3 require special treatment,

which is described in Appendix B.

The case α = 0

To check whether the potential corresponds to an instance of CS with α = 0 one has to
check whether a set of 10 nullvectors gives the defining representation of so(5). This can
be done in exactly the same way as for the 4HDM (cf. 3.2).

3.4 N > 5

As the number of doublets increases, the basis-invariant signatures of CS become more
and more subtle. This is because the number of parameters in the custodial block grows as(
N
4

)
and its eigenvalues and eigenvectors become functions of more and more parameters,

removing the possibility for clear patterns. Hence it becomes increasingly difficult to
detect CS. An exception is instances of CS where all the eigenvalues of the custodial block
are zero. Then CS can be identified, exactly as with N = 4 and N = 5 (cf. sections 3.2),
by applying the CP2 detection methods of [6] restricted to nullvectors of Λ. In the case of
more than k = N(N−1)/2 nullvectors, techniques like the ones found in Appendix B may
be invoked. For the remaining instances of CS, where some eigenvalues of the custodial
block are non-zero, corresponding to the presence of terms (2.18) in the potential, we
outline below the difficulties that arise beyond N = 5 doublets.

With 6 doublets, the custodial block C6 has six two-fold degenerate eigenvalues ap-
pearing in three pairs

(−α1, α1), (−α2, α2), (−α3, α3). (3.13)

The corresponding 12 eigenvectors are contained in the so(6) subalgebra but cannot span
it since it has dimension 15. The absence of an eigenvalue pattern for the three remaining
eigenvectors which are needed to span so(6) means one would need to check if any of the(
35−12

3

)
= 1771 sets of three eigenvectors can complete the 12 remarkable eigenvectors into

a basis of so(6). Moreover, because of the eigenvalue pattern (3.13), so(3) subalgebras
cannot coincide with any of the degenerate subspaces. Hence, for N = 6, a test based on
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verifying F-products would be impractical because the F-products would depend on the
choice of basis for the degenerate subspaces.

Beyond N = 6 we do not observe any eigenvalue pattern which significantly com-
plicates the characterization of CS. However the custodial block CN , being traceless for
all N , has k − 1 = (N+1)(N−2)

2
independent eigenvalues which are functions of its

(
N
4

)

parameters λabcd. Beyond the scope of this work lies an interesting but possibly difficult
question: can any set of k real numbers {αi ∈ R|i = 1, . . . , k,

∑
αi = 0} be the set of

roots of the characteristic polynomial of CN for some set of parameters {λabcd}? If this
is true then the problem will simplify significantly, although the difficulty of identifying
which bases of so(N) correspond to CS will remain.

4 Summary

We have found a characterization of CS for scalar potentials with any number of doublets
based on geometrical and representation-theoretical relations among the adjoint quanti-
ties L,M and Λ which characterize a potential in its bilinear form. To do so we considered
the canonical form of the NHDM potential with CS and extracted an eigenvalue pattern
in Λ which naturally must be present in any Higgs basis. We then showed that CS is
present when the corresponding eigenvectors coincide with particular bases of the defin-
ing representation of so(N), characterized by specific F-product relations. The task of
distinguishing representations was achieved by means of embedding indices, which become
apparent in F-product relations of normalized eigenvectors.

For N ≤ 5, the presence or absence of the CS eigenvalue pattern is straightforward
to identify, and we provide practical algorithms for establishing the presence or absence
of CS for any numerical instance of a potential, and also for generic potentials with
indeterminate coefficients, at least in the case the eigenvectors of Λ are constant. In
special cases where Λ has highly degenerate eigenvalues, one runs into the problem of
isolating Lie algebras inside of arbitrary vector spaces for which we provided a solving
method.

With more than five doublets, the CS eigenvalue pattern essentially fades away and a
practical implementation of our characterization was not found.

Acknowledgements

RP is grateful to Igor P. Ivanov, Celso C. Nishi and Andreas Trautner for stimulating
discussions and helpful comments which enhanced his understanding of covariants-based
methods. MS is appreciative of Igor P. Ivanov for recommending the covariant approach
of reference [5] for recognizing CS.

A Some mathematical results

A basis for a representation of a Lie algebra g may be written as {Bi}bi=1, where b is
the number of matrices in the basis, which may be less than the dimension of g if the
representation is not faithful. In the following Lemma, we will abbreviate such a basis by
{Bi} and hence, for simplicity, suppress the range of the index i.
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Lemma 1 (A generalized Schur’s Lemma). Let {Bi} = {diag (Bi
1, . . . , B

i
k)} be a basis for

a complex representation of a Lie algebra g written in block diagonal form, where each
set of nj × nj-dimensional matrices {Bi

j} is the basis of an irreducible representation of
g. Moreover, assume that each irreducible representation {Bi

j} only occur once. Then a
matrix M which commutes with all matrices in {Bi} will be of the form

M = diag (λ1In1×n1 , . . . , λkInk×nk
) (A.1)

for complex numbers λj.

Proof. Write M in block form with blocks Mmn, where the k diagonal blocks have the
same dimensions as the diagonal blocks of {Bi}. Then the ordinary Schur’s Lemma gives
us that each diagonal block Mmm of M must be a multiple of identity, since M commutes
with Bi

m for all i.
Moreover, the off-diagonal block elements (not necessarily square) of M have to be

zero. Indeed, suppose MBi = BiM for all i, and consider an off-diagonal block which,
consequently, satisfies

Bi
mMmn = MmnB

i
n, (A.2)

for all i, with no sum over m or n, and with m ̸= n. We will show by contradiction that
the matrices Mmn = 0, i.e. the off-diagonal blocks of M are zero.

Assume that Mmn ̸= 0. We then claim that Mmn has a non-trivial nullspace (i.e. the
nullspace is neither zero nor the whole spaceMmn is acting on). Indeed, if the matrixMmn

is square then it cannot be invertible, for then (A.2) would infer that the representation
{Bi

m} is equivalent to the representation {Bi
n}, contrary to the premise of the Lemma.

Since the matrix Mmn is not invertible but non-zero, it has a non-trivial nullspace. On
the other hand, if Mmn is not square, the non-zero Mmn will always have a non-trivial
nullspace either by multiplying vectors from the left (cokernel) or from the right (kernel).
Now let W be the nullspace of Mmn, and assume the number of columns of Mmn is greater
or equal to the number of rows, i.e. it has a non-trivial kernel. Then (A.2) gives

0 = MmnB
i
nW, (A.3)

but since {Bi
n} is irreducible, we can find an index i such that W ′ ≡ Bi

nW ⊈ W , otherwise
W would be an invariant subspace. But then (A.3) yields MmnW

′ = 0 which contradicts
that W was the nullspace of Mmn. Hence Mmn = 0.

In case the number of columns of Mmn is less than the number of rows, the same
argument as above can be applied on the transpose of eq. (A.2): MT

mn will then have a
nullspace by multiplying from the right, and this will lead to the same contradiction as
before, since {Bi

m} generates an irreducible representation if and only if {(Bi
m)

T} generates
an irreducible representation. The latter follows from that a representation is irreducible
if and only if the dual representation is irreducible. Hence M is of the block diagonal
form (A.1).

Proposition 1. Let Λ be a real symmetric matrix. If a subset {va} of eigenvectors of
Λ provide a representation of the basis elements {ba} of a Lie algebra g ⊆ su(N) as
Π(ba) ≡ vaiλi, then Π is a faithful representation of g.
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Proof. Suppose the representation Π is not faithful, then there exists h ∈ g, h = haba ̸= 0,
such that Π(h) = havaiλi = 0. That is, {va} is not a linearly independent set. But then
the eigenvectors of Λ do not span RN2−1 and Λ isn’t diagonalizable, contradicting the
assumption that Λ is a real symmetric matrix.

Proposition 2. Let Π and Π′ be two Hermitian (or two anti-Hermitian), complex, N-
dimensional representations of the same Lie algebra g. Furthermore, assume the repre-
sentations are equivalent, i.e. there exists a matrix S such that Π(X) = SΠ′(X)S−1 for
all X ∈ g, and let each irreducible component of Π only occur one time. Then S can be
chosen to be special unitary.

Proof. The case where the two representations Π and Π′ are irreducible, was proven in [6],
although this case will be a special case of the argument below.

If the representation Π is reducible, we may perform a basis shift on the vector space
V = CN the representation is acting on, such that the matrices Π(X) are block diagonal
for all X ∈ g. By the Hermiticity (or anti-Hermiticity) of the representations,

Π′(X) = S−1Π(X)S = S†Π(X)(S−1)†, (A.4)

for all X ∈ g. By multiplying (A.4) by S from the left, and by S† from the right, we
see the matrix SS† commute with the block diagonal matrices Π(X). By Lemma 1 (a
generalized Schur’s Lemma), the matrix SS† then must be diagonal, where the diagonal
elements of SS† are numbers λi > 0 (positive since SS† is positive-definite), and where
λi has the same value for all i corresponding to the same irreducible component (i.e. each
block) of the matrices Π(X). By dividing each row of S, indexed by i, by

√
λi, we then

obtain a matrix U which is unitary, since UU † = I. Then Π(X) = UΠ′(X)U †, since
(Π(X))ij = Sim(Π

′(X))mnS
−1
nj = (Sim/

√
λi)(Π

′(X))mn(S
−1
nj ·

√
λj) = Uim(Π

′(X))mnU
†
nj,

where the second equality applies that (Π(X))ij = 0 when i and j corresponds to different
blocks, since (Π(X))ij was block diagonal. Finally, we can write U = eiθU ′ where U ′ is
special unitary, and then U ′ is the matrix sought in the Proposition.

An important special case of Proposition 2 is then

Proposition 3. Two equivalent representations of so(N) contained in su(N), contain-
ing only one copy of each irreducible component, may always be related by a similarity
transformation given by a special unitary matrix U .

Before showing the next Proposition, we recall that the elements of a adjoint vector
ua ∈ RN2−1 are written uai ≡ (ua)i.

Proposition 4. If an orthonormal set of vectors {ta}3a=1 satisfies

αF (ta,tb) = ϵabctc, (A.5)

for some number α, then so does the rotated set of vectors {t′a = Rabtb}3a=1 with R ∈ SO(3).

Proof. Consider αF
(t′a,t

′
b)

k = αfijkt
′
ait

′
bj = αRadRbefijktditej = αRadRbeF

(td,te)
k by defini-

tion. Now using a Levi-Civita symbol identity RadRbeRcgϵdeg = det(R)ϵabc, which infers
RadRbeϵdeg = det(R)ϵabcRcg, and the assumption that R ∈ SO(3) we get

αF (t′a,t
′
b) = RadRbeϵdegtg
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= ϵabcRcgtg

= ϵabct
′
c (A.6)

In the case of an improper rotation R ∈ O(3), an emerging minus sign in (A.6) from
det(R) can be absorbed into the definition of the vectors {t′a}.

The following Proposition shows that the F-product relations characterizing the cus-
todial block CN for N = 5 are given by setting all λabcd of the custodial invariants I

(4)
abcd

to zero, except for one. And then we easily can decide if a 5HDM matrix Λ is custodial-
symmetric.

Proposition 5. Let V be a manifestly custodial-symmetric 5HDM potential. Then all
but one custodial invariants I

(4)
abcd may be eliminated through a series of orthogonal Higgs

basis transformations, while V is preserved in a manifestly custodial-symmetric form.

Proof. First, the part of V corresponding to the custodial block may be written

VC = λ1234I
(4)
1234 + λ1235I

(4)
1235 + λ1245I

(4)
1245 + λ1345I

(4)
1345 + λ2345I

(4)
2345. (A.7)

Note that the invariant

I
(4)
abcd ≡ I(4)(Φa,Φb,Φc,Φd) = Im(Φ†

aΦb)Im(Φ†
cΦd) + Im(Φ†

aΦd)Im(Φ†
bΦc)

+ Im(Φ†
aΦc)Im(Φ†

dΦb), (A.8)

is R-linear in all its variables, in the sense

I(4)(r1x1 + r2x2, y, z, w) = r1I
(4)(x1, y, z, w) + r2I

(4)(x2, y, z, w), (A.9)

for r1, r2 ∈ R, and similarly for the other variables. Without loss of generality, we will
now show how to eliminate all custodial invariants I(4) but I

(4)
1234. Consider the orthogonal

basis change (a mixing of doublet 1 and 2)

(
Φ1

Φ2

)
→

(
cosα − sinα
sinα cosα

)(
Φ1

Φ2

)
, (A.10)

other fields left invariant. Orthogonal basis changes act block diagonally on ΛC , and
do not mix the custodial block C5 with A5, since bilinears associated with imaginary
Gell-Mann matrices are mapped to other bilinears associated with imaginary Gell-Mann
matrices, while bilinears associated with real Gell-Mann matrices remain real. Then,
under the transformation (A.10),

λ2345I
(4)
2345 + λ1345I

(4)
1345 → (λ2345 cosα− λ1345 sinα)I

(4)
2345

+ (λ1345 cosα + λ2345 sinα)I
(4)
1345. (A.11)

Hence we can eliminate one of these custodial invariants, e.g. I
(4)
2345, by setting

α = arctan(
λ2345

λ1345

). (A.12)
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The other terms associated with C5,

λ1234I
(4)
1234 + λ1235I

(4)
1235 + λ1245I

(4)
1245, (A.13)

are mapped to terms of the same type under (A.10): For instance will, when doublets 1
and 2 are mixed by (A.10),

λ1234I
(4)
1234 → λ1234I

(4)
1+2,1+2,3,4 (A.14)

where index 1 + 2 means we have some R-linear combination of Φ1 and Φ2 as the corre-
sponding variable of I(4)(x, y, z, w). Then, since λabcd is R-linear in all variables,

λ1234I
(4)
1234 → λ′

1234I
(4)
1234, (A.15)

for some real number λ′
1234. Here we have used that I

(4)
abcd is antisymmetric in all indices,

which e.g. infers I
(4)
1134 = 0. Moreover, each of the terms in the sum (A.13) will be mapped

to new terms of the exactly same type under (A.10), so (A.13) is preserved in the same

form. Hence, we have eliminated I
(4)
2345 from V . We may then proceed in the same manner

with the surviving custodial invariants of V , where VC in the new basis may be written

VC = λ′
1234I

(4)
1234 + λ′

1235I
(4)
1235 + λ′

1245I
(4)
1245 + λ′

1345I
(4)
1345. (A.16)

By letting
(
Φ2

Φ3

)
→

(
cos β − sin β
sin β cos β

)(
Φ2

Φ3

)
, (A.17)

the two last terms of (A.16) are rotated into each other, while the other terms are mapped

to terms of the exactly same type (i.e. corresponding to the same I
(4)
abcd). By adjusting

the angle β to an appropriate value, we may eliminate the last term of (A.16). We may

continue in the same way until only λ′′
1234I

(4)
1234 is left.

The value of the surviving parameter in Proposition 5 will be given by

λ′′
1234 =

√ ∑

a<b<c<d

λ2
abcd, (A.18)

since orthogonal basis transformations conserve the eigenvalues of CN . The procedure of
Proposition 5 only works for N = 5, since given any distinct pair of indices when N=5,
there is always only two I

(4)
abcd with exactly one of the numbers among their indices. Hence

these two invariants will be rotated into each other while the others are left in the same
form under an SO(2) basis shift. Furthermore, Proposition 5 infers that all custodial
blocks C5 with the same eigenvalues are equivalent, since they are all equivalent to this
simple instance with only one non-zero λabcd.

B Handling large degeneracies

In this Appendix, we will consider eigenvalue degeneracies beyond the degeneracies which
are characteristic of the CS. In cases where such degeneracies exist, one runs into the
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problem of searching for Lie algebras within a generic vector space i.e. identifying sub-
spaces which are also Lie algebras. While a solution based on Lie algebraic methods, for
instance involving root systems, would be most satisfying, the authors are not aware of
any theory on this subject, when the ambient vector space V itself is not a Lie algebra.
Therefore we propose below a solution based on solving systems of quadratic polynomial
equations. Our method relies on transforming the problem into the minimization of a
quartic polynomial which may have up to 90 variables. Even with so many variables,
the minimization is straightforward with e.g. Scipy’s [35] optimization module and we
manage with a naive implementation to solve the relevant equations even for the most
extreme degeneracy patterns in the 5HDM in a couple of minutes on an ordinary desktop
computer. It is likely that the computation time can be reduced with more sophisticated
optimization code.

N = 3

In the 3HDM, when there are more LM -orthogonal nullvectors than the three that are
characteristic for the CS, i.e. l ≡ dim(WLM

0 ) > 3, then three linear combinations of
the basis vectors of WLM

0 might generate the defining representation of so(3), which is
necessary and sufficient for CS. To isolate these linear combinations, if they exist, we
begin by considering three arbitrary vectors of WLM

0

vi = cijuj , i ∈ {1, 2, 3}. (B.1)

where {uj}lj=1 is any orthonormal basis of WLM
0 and cij are coefficients to be determined.

If the vectors (B.1) are to form an orthonormal basis for the defining representation of
so(3), then they must satisfy the following equations

gab(c) ≡ va · vb − δab = 0 , b ≤ a ≤ 3

hab(c) ≡ 2F (va,vb) − ϵabdvd = 0 , b < a ≤ 3. (B.2)

This system of 30 equations is to be solved for the 3l coefficients cij, which can be difficult
using a direct solving approach or even Gröbner bases [36]. We find that the most robust
method for finding numerical solutions, if they exist, is to transform the problem into an
optimization problem by defining a cost function

J ≡
∑

b≤a≤3

g2ab +
∑

b<a≤3

hab · hab (B.3)

which is to be minimized with respect to the coefficients cij. Solutions to the equa-
tions (B.2) then correspond to minima of the cost function with J = 0. Conversely, if
J > 0 at its global minimum, then there are no solutions. Such optimization problems
are very well studied, and there exist many algorithms to tackle them, which are imple-
mented in readily available computing packages. Large degeneracies in the 4HDM and
5HDM may be treated in the same way, with the appropriate equations.

N = 4

In the case of the 4HDM with extra degeneracies such that l+ ≡ dim(WLM
+α ) > 3 or

l− ≡ dim(WLM
−α ) > 3, one must, as described in Section 3.2, look for six orthonormal
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vectors, three in WLM
+α and three in WLM

−α , generating the defining representation of so(4).
As before, we parametrize these vectors as

v±i = c±iju
±
j , i ∈ {1, 2, 3} (B.4)

where {u±
j }l

±
j=1 are bases for WLM

±α and c±ij are coefficients to be determined. Now one
must find out whether or not the equations

g
(±)
ab (c±) ≡ v±a · v±b − δab = 0 , b ≤ a ≤ 3

h
(++)
ab (c+) ≡

√
2F (v+a ,v+b ) − ϵabcv

+
c = 0 , b < a ≤ 3

h
(−−)
ab (c−) ≡

√
2F (v−a ,v−b ) − ϵabcv

−
c = 0 , b < a ≤ 3

h
(+−)
ab (c±) ≡

√
2F (v+a ,v−b ) = 0 , a, b ≤ 3. (B.5)

have any solutions. Following the same optimization strategy as in the 3HDM to solve
what is now a system of 237 quadratic equations with 3(l+ + l−) unknowns, the cost
function to minimize is

J ≡
∑

b≤a≤3

(
g
(+)2
ab + g

(−)2
ab

)
+

∑

b<a≤3

(
h
(++)
ab · h(++)

ab + h
(−−)
ab · h(−−)

ab

)
+

∑

a,b≤3

h
(+−)
ab · h(+−)

ab (B.6)

N = 5

For the 5HDM, we may have l+ ≡ dim(WLM
+α ) > 3, l− ≡ dim(WLM

−α ) > 3 or l0 ≡
dim(WLM

0 ) > 4, in which case isolating the defining representation of so(5) is not as
straightforward as without excessive degeneracies, cf. Section 3.3. Such extra degeneracies
are handled similarly as with N = 3 and N = 4 doublets, by first writing down a general
parametrization of three vectors in WLM

+α , three vectors of WLM
−α and four vectors of WLM

0

v±i = c±iju
±
j , i ∈ {1, 2, 3}

v0i = c0iju
0
j , i ∈ {1, . . . , 4}, (B.7)

where {u±
j }l

±
j=1 and {u0

j}l
0

j=1 are bases for WLM
±α and WLM

0 , and then checking if the coef-
ficients c±ij, c

0
ij can take values such that the ten vectors above form an orthonormal basis

for the defining representation of so(5). This amounts to solving the equations

g
(±)
ab (c±) ≡ v±a · v±b − δab = 0 , b ≤ a ≤ 3

g
(0)
ab (c

0) ≡ v0a · v0b − δab = 0 , b ≤ a ≤ 4

hab(c
±, c0) ≡

√
2F (va,vb) − fabcvc = 0 , b < a ≤ 10 (B.8)

where in the last equation we have let {va}10a=1 ≡ {v+1 , v+2 , v+3 , v−1 , v−2 , v−3 , v01, . . . , v04} for
conciseness and fabc are structure constants of so(5) such that

fabc = ϵabc , 1 ≤ a, b, c ≤ 3 and 4 ≤ a, b, c ≤ 6. (B.9)

Any such structure constants will do since the F-products involving the nullvectors {v0a}4a=1

are unconstrained by CS. One may, for example, choose the structure constants in the
orthonormal so(5) basis given by

{
λ1 − λ8√

2
,
λ2 + λ6√

2
,
λ3 − λ5√

2
,
λ1 + λ8√

2
,
−λ2 + λ6√

2
,
λ3 + λ5√

2
, λ4, λ7, λ9, λ10

}
(B.10)
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where λi are the antisymmetric Gell-Mann matrices in 5 dimensions, as given in Section
2.1 and in [18]. This is a convenient choice since the structure constants in this basis are
sparse and satisfy (B.9).

Solving the 1102 equations in (B.8) for the 3(l+ + l−) + 4l0 coefficients c±ij, c
0
ij is then

done by minimizing the cost function

J ≡
∑

b≤a≤3

(
g
(+)2
ab + g

(−)2
ab

)
+

∑

b≤a≤4

g
(0)2
ab +

∑

b<a≤10

hab · hab. (B.11)

For reference, we solved the most difficult case l+ = l− = 3 and l0 = 18, where J
has 90 variables, in a couple of minutes on an ordinary desktop computer, for random
and completely generic numerical potentials. It is also worth mentioning that, for a
fixed number of variables, the number of equations, although rather impressive, does not
significantly increase the difficulty of the optimization problem since the cost function is
always a quartic polynomial.
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Part III

Appendix





Appendix A

Code

The Mathematica code CX-tools containing all the necessary functions to implement
the algorithms developed for papers II and III, along with some commented examples, is
available at:

https://github.com/robinplantey/NHDM-CX-tools
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